本文已被:浏览 167次 下载 897次
Received:March 13, 2024 Revised:April 10, 2024
Received:March 13, 2024 Revised:April 10, 2024
中文摘要: 遥感目标检测往往具有图像尺度变化大、目标微小、密集排列和宽高比过大的特性, 给高精度定向目标检测造成困难. 本文提出了一种全局上下文注意力特征融合金字塔网络. 首先, 本文设计了一种三重注意力特征融合模块, 它能够更好地融合语义和尺度不一致的特征. 然后引入层内调节方法改进并提出了一个全局上下文信息增强网络, 对含有高级语义信息的深层特征的进行细化, 提升表征能力. 在此基础上, 以全局集中调节的思想设计了全局上下文注意力特征融合金字塔网络, 利用注意力调制特征自上而下地调节浅层多尺度特征. 在几个公开数据集中进行了广泛实验, 实验结果的高精度评价指标均优于目前先进的模型.
Abstract:Remote sensing object detection usually faces challenges such as large variations in image scale, small and densely arranged targets, and high aspect ratios, which make it difficult to achieve high-precision oriented object detection. This study proposes a global context attentional feature fusion pyramid network. First, a triple attentional feature fusion module is designed, which can better fuse features with semantic and scale inconsistencies. Then, an intra-layer conditioning method is introduced to improve the module and a global context enhancement network is proposed, which refines deep features containing high-level semantic information to improve the characterization ability. On this basis, a global context attentional feature fusion pyramid network is designed with the idea of global centralized regulation to modulate shallow multi-scale features by using attention-modulated features. Experiments have been conducted on multiple public data sets, and results show that the high-precision evaluation indicators of the proposed network are better than those of the current advanced models.
keywords: remote sensing image oriented object detection attentional feature fusion feature pyramid network
文章编号: 中图分类号: 文献标志码:
基金项目:江苏省基础研究计划(BK20221341)
引用文本:
孙文赟,车嘉航,金忠.基于全局上下文注意力特征融合金字塔网络的遥感目标检测.计算机系统应用,2024,33(9):114-122
SUN Wen-Yun,CHE Jia-Hang,JIN Zhong.Remote Sensing Object Detection Based on Global Context Attentional Feature Fusion Pyramid Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(9):114-122
孙文赟,车嘉航,金忠.基于全局上下文注意力特征融合金字塔网络的遥感目标检测.计算机系统应用,2024,33(9):114-122
SUN Wen-Yun,CHE Jia-Hang,JIN Zhong.Remote Sensing Object Detection Based on Global Context Attentional Feature Fusion Pyramid Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(9):114-122