本文已被:浏览 97次 下载 890次
Received:March 12, 2024 Revised:April 10, 2024
Received:March 12, 2024 Revised:April 10, 2024
中文摘要: 轻量级的图像融合算法对于人眼观察和机器识别有着重要的意义. 通过对视觉显著性在红外与可见光图像融合过程中的重要性研究, 在SDNet融合网络的基础上, 优化并设计了一种视觉显著图 (visual saliency map, VSM)指导下的MSDNet轻量型融合网络. 首先, 通过对SDNet的结构以及通道数进行了缩减以加快训练及推理速度, 并利用结构参数化与反参数化技术增强轻量化模型的学习能力; 然后, 针对模型的训练, 使用了基于显著值图VSM指导的损失函数, 实现模型的自监督训练; 最后, 在训练结束时, 将图像重建分支删除, 根据卷积参数融合得到最终的轻量化模型. 实验表明, 该轻量化网络能够在保证图像融合质量的基础上, 极大地提高了融合的速率, 使其在移动端的移植成为可能.
Abstract:Light-weight image fusion algorithm is very important for human eye observation and machine recognition. By studying the importance of visual saliency in infrared and visible image fusion, a visual saliency map (VSM)-guided MSDNet fusion network is optimized and designed based on the SDNet fusion network. Firstly, the structure and channel numbers of SDNet are reduced to accelerate training and inference speed, and the learning ability of the light-weight model is enhanced by structural parameterization and reverse parameterization techniques. Then, for model training, the loss function guided by VSM is used to achieve model self-supervised training. Finally, at the end of the training, the image reconstruction branch is deleted. So the final light-weight model is obtained by the fusion of convolution parameters. Experiments show that the light-weight network can not only ensure image fusion quality but greatly improve the speed, making its porting in mobile terminals possible.
文章编号: 中图分类号: 文献标志码:
基金项目:校级自然科学基金一般项目(XZR2023B05); 安徽省高等学校科学研究重点项目(2023AH052821); 安徽省质量工程重点项目(2022jyxm626)
引用文本:
邹韵,王振.VSM指导下MSDNet轻量型融合网络建模与仿真.计算机系统应用,2024,33(10):133-139
ZOU Yun,WANG Zhen.Modeling and Simulation of Light-weight Fusion Network MSDNet Guided by VSM.COMPUTER SYSTEMS APPLICATIONS,2024,33(10):133-139
邹韵,王振.VSM指导下MSDNet轻量型融合网络建模与仿真.计算机系统应用,2024,33(10):133-139
ZOU Yun,WANG Zhen.Modeling and Simulation of Light-weight Fusion Network MSDNet Guided by VSM.COMPUTER SYSTEMS APPLICATIONS,2024,33(10):133-139