###
计算机系统应用英文版:2024,33(9):77-84
本文二维码信息
码上扫一扫!
基于ST-UNet和目标特征的混凝土裂缝检测
(河海大学 数学学院, 南京 211106)
Concrete Crack Detection Based on ST-UNet and Target Features
(School of Mathematics, Hohai University, Nanjing 211106, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 162次   下载 962
Received:March 20, 2024    Revised:April 16, 2024
中文摘要: 混凝土裂缝对结构承载能力、耐久性和防水性有负面影响, 因此早期裂缝检测具有重要意义. 大数据和深度学习的快速发展, 为裂缝智能检测提供了有效的方法. 针对裂缝检测过程中图像正负样本不平衡, 裂缝区域色彩深沉和低亮度的特点, 提出一种基于ST-UNet (Swin Transformer U-Net)和目标特征的裂缝检测方法. 该算法在网络中引入CBAM注意力机制, 使网络更加关注图像中对裂缝检测起决定作用的像素区域, 增强裂缝图像的特征表达能力; 使用Focal+Dice混合损失函数代替单一交叉熵损失函数, 处理样本图像正负样本分布不均的问题; 设计APSD正则化项优化损失函数, 针对裂缝区域色彩深沉、低亮度的问题, 降低检测的漏检率与误检率. 裂缝检测结果表明: IoU指标提升22%, Dice指数提升17%, 该算法是有效可行的.
Abstract:Concrete cracks have negative impacts on the structural load-bearing capacity, durability, and waterproofing. Therefore, early crack detection is of paramount importance. The rapid development of big data and deep learning provides effective methods for intelligent crack detection. To address the issues of imbalanced positive and negative samples, as well as the challenges posed by deep colors and low luminance in crack areas during the crack detection process, this study proposes a crack detection method based on Swin Transformer U-Net (ST-UNet) and target features. This algorithm introduces the CBAM attention mechanism into the network, enabling the network to focus more on the pixel regions in the image that are crucial for crack detection, thereby enhancing the feature representation capability of crack images. The Focal+Dice mixed loss function replaces the single cross-entropy loss function to address the problem of uneven distribution of positive and negative sample images. Additionally, the design of the APSD regularization term optimizes the loss function, addressing the issues of deep colors and low luminance in crack areas and reducing both missed rates and false rates in detection. The results of crack detection show a 22% improvement in IoU and a 17% increase in the Dice index, indicating the effectiveness and feasibility of the algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金重点项目(41830110)
引用文本:
范昊坤,刘向阳.基于ST-UNet和目标特征的混凝土裂缝检测.计算机系统应用,2024,33(9):77-84
FAN Hao-Kun,LIU Xiang-Yang.Concrete Crack Detection Based on ST-UNet and Target Features.COMPUTER SYSTEMS APPLICATIONS,2024,33(9):77-84