###
计算机系统应用英文版:2024,33(5):246-253
本文二维码信息
码上扫一扫!
社交网络中舆论共识形成的动态模型分析
(1.宁夏大学 信息工程学院, 银川 750021;2.宁夏大学 经济管理学院, 银川 750021)
Dynamic Model Analysis of Opinion Consensus Formation in Social Network
(1.School of Information Engineering, Ningxia University, Yinchuan 750021, China;2.School of Economics and Management, Ningxia University, Yinchuan 750021, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 333次   下载 1406
Received:October 22, 2023    Revised:November 27, 2023
中文摘要: 本研究致力于深入探讨社交网络中舆论形成的复杂过程, 尤其是关注去中心化环境下达成共识的机制. 研究提出了一种新的意见分类策略, 即第二置信区间. 该策略旨在对传统DeGroot共识模型进行改进, 从而发展出两种不同的意见动态模型: FAI模型和ORA模型. 这些模型综合考虑了个体对周围意见的接受程度和重视程度, 并通过对社交网络中邻域意见的深入分析, 对个体模型进行了全面设置, 涵盖私人意见、表达意见、固执度以及偏好等多重因素. 研究结果表明, 在特定参数设定下, FAI模型和ORA模型均能比原DeGroot模型更加迅速地达成共识. 具体来说, ORA模型的收敛速度在700步长左右, 而FAI模型的收敛速度随参数值的增加而逐步接近ORA模型. 相较于基准模型, ORA模型在收敛意见值上的差异较小, 不超过3.5%, 而FAI模型则显示出更大的波动性. 这些发现不仅加深了对于社交网络中公共意见形成机制的理解, 也强调了个体邻域内意见动力学在共识形成过程中的重要性, 为此领域的未来研究提供了新的视角和研究方向.
Abstract:This study is dedicated to exploring the complex process of opinion formation in social networks, with a particular focus on the mechanisms of consensus achievement in decentralized environments. A novel opinion classification strategy, termed “the second confidence interval” is proposed to improve the traditional DeGroot consensus model, and two distinct opinion dynamics models are developed: the far attack inbreeding (FAI) model and the outbred recent attack (ORA) model. These models comprehensively consider the degree of individual acceptance and emphasis on surrounding opinions. In addition, through an in-depth analysis of neighborhood opinions in social networks, a comprehensive setup of the individual model is carried out, covering multiple factors such as private opinions, expressed opinions, obstinacy, and preferences. The results indicate that under specific parameter settings, both the FAI and ORA models can reach a consensus more rapidly than the original DeGroot model. Specifically, the ORA model converges at around 700 steps, while the convergence speed of the FAI model gradually approaches that of the ORA model with increasing parameter values. Compared with the baseline model, the ORA model exhibits smaller variations in converged opinion values, no more than 3.5%, whereas the FAI model demonstrates greater volatility. These findings not only deepen people’s understanding of the public opinion formation mechanisms in social networks but also highlight the significance of opinion dynamics within individual neighborhoods in the consensus formation process, offering new perspectives and research directions for future studies in this field.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(71461025); 宁夏回族自治区重点研发项目(2023BEG02067)
引用文本:
冯娅君,赵军.社交网络中舆论共识形成的动态模型分析.计算机系统应用,2024,33(5):246-253
FENG Ya-Jun,ZHAO Jun.Dynamic Model Analysis of Opinion Consensus Formation in Social Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(5):246-253