###
计算机系统应用英文版:2024,33(5):239-245
本文二维码信息
码上扫一扫!
基于孪生网络的串联互相关目标跟踪
(1.南京信息工程大学 软件学院, 南京 210044;2.南京信息工程大学 计算机学院、网络空间安全学院, 南京 210044)
Sequential Cross-correlation Object Tracking Based on Siamese Network
(1.School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 240次   下载 826
Received:October 12, 2023    Revised:November 27, 2023
中文摘要: 针对现有孪生网络目标跟踪技术只对模板特征和搜索特征进行一次融合操作, 使得融合特征图上的目标特征相对粗糙, 不利于跟踪器精确跟踪定位的问题, 本文设计了一个串联互相关模块, 旨在利用现有的互相关方法, 对模板特征和搜索特征做多次的互相关操作增强融合特征图上的目标特征, 提升后续分类和回归结果的准确性, 以更少的参数实现速度和精度之间的平衡. 实验结果表明, 所提出的方法在4个主流跟踪数据集上都取得了很好的结果.
Abstract:Existing Siamese network object tracking techniques perform only one fusion operation of template features and search features, which makes the object features on the fused feature map relatively coarse and unfavorable to the tracker’s precise positioning. In this study, a serial mutual correlation module is designed. It aims to use the existing mutual correlation method to enhance the object features on the fused feature map by performing multiple mutual correlation operations on the template features and the search features, so as to improve the accuracy of the subsequent classification and regression results and strike a balance between speed and accuracy with fewer parameters. The experimental results show that the proposed method achieves good results on four mainstream tracking datasets.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈凤姣,程旭.基于孪生网络的串联互相关目标跟踪.计算机系统应用,2024,33(5):239-245
CHEN Feng-Jiao,CHENG Xu.Sequential Cross-correlation Object Tracking Based on Siamese Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(5):239-245