###
计算机系统应用英文版:2023,32(4):339-346
本文二维码信息
码上扫一扫!
融合XGBoost与FM的混合式学习成绩分类预测
(1.南京信息工程大学 自动化学院, 南京 210044;2.无锡学院 自动化学院, 无锡 214105)
Blended Learning Grade Classification Prediction Based on XGBoost and FM
(1.School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.School of Automation, Wuxi College, Wuxi 214105, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 594次   下载 1653
Received:August 26, 2022    Revised:September 27, 2022
中文摘要: 综合考虑混合式学习成绩分类预测中数据存在不平衡性和稀疏性的特点, 提出了一种SMOTE-XGBoost-FM混合式学习成绩分类预测模型. 首先通过SMOTE采样均衡数据集; 针对数据稀疏性问题, 使用XGBoost对采样后的数据进行特征交叉, 然后对所生成树的叶子节点进行独热编码, 以生成高阶特征数据, 最后将其输入因子分解机(FM)进行迭代训练以获最优模型. 实验结果表明, SMOTE-XGBoost-FM模型在混合式学习成绩分类预测中准确率达到了92.7%, 相较于单一的XGBoost、FM模型分别提升了5.7%和11.7%, 能有效对学生学习情况进行分类预测, 为提高教学效果提供参考.
Abstract:By comprehensively considering the imbalance and sparsity of data in blended learning grade classification and prediction, this study proposes a blended learning grade classification and prediction model, namely, SMOTE-XGBoost-FM. Firstly, an equalization data set is sampled by SMOTE. In order to solve the problem of data sparsity, XGBoost is used to perform feature overlap on the sampled data, and then the leaf nodes of the generated tree are processed by one-hot encoding to generate high-order feature data. Finally, the data are input into a factorization machine (FM) for iterative training to obtain the optimal model. The experimental results show that the SMOTE-XGBoost-FM model achieves an accuracy of 92.7% in blended learning grade classification and prediction, which is 5.7% and 11.7% higher than that of single XGBoost and FM models, respectively. Therefore, it can effectively classify and predict students’ learning effects and provide a reference for improving teaching efficiency.
文章编号:     中图分类号:    文献标志码:
基金项目:江苏省自然科学青年基金(BK20210661); 江苏省研究生实践创新计划(SJCX22_0353); 江苏省高等学校自然科学研究面上项目(19KJB520044); 南京信息工程大学无锡校区创新实践项目(WXCX202117)
引用文本:
章刘,陈逸菲,熊雄,裴梓权,唐乃乔.融合XGBoost与FM的混合式学习成绩分类预测.计算机系统应用,2023,32(4):339-346
ZHANG Liu,CHEN Yi-Fei,XIONG Xiong,PEI Zi-Quan,TANG Nai-Qiao.Blended Learning Grade Classification Prediction Based on XGBoost and FM.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):339-346