###
计算机系统应用英文版:2023,32(4):354-360
本文二维码信息
码上扫一扫!
融合变道意图识别的车辆轨迹预测GAN模型
(长安大学 信息工程学院, 西安 710064)
GAN Model of Vehicle Trajectory Prediction Based on Lane Changing Intention Recognition
(School of Information Engineering, Chang’an University, Xi’an 710064, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 705次   下载 1576
Received:August 29, 2022    Revised:September 30, 2022
中文摘要: 车辆轨迹预测能够有效降低车辆轨迹突变造成的碰撞风险, 是实现安全驾驶的关键技术之一. 针对传统轨迹预测算法缺乏对驾驶员意图分析的问题, 本文提出了一种融合生成对抗网络和驾驶意图识别的车辆轨迹预测模型. 该模型基于生成对抗网络框架预测车辆轨迹, 并引入基于深度神经网络的变道意图识别模块识别驾驶员的变道意图. 通过在公开数据集NGSIM上与LSTM、S-LSTM、CS-LSTM和S-GAN模型进行对比试验, 实验结果表明与其他轨迹预测模型相比, 本文提出的CS-DNN-GAN模型具有较好的预测精确度.
中文关键词: 轨迹预测  驾驶意图  生成对抗网络  LSTM
Abstract:Vehicle trajectory prediction can effectively reduce the collision risk caused by the sudden change of a vehicle trajectory, which is one of the key technologies to achieve safe driving. To address the problem that the traditional trajectory prediction algorithm lacks the analysis of the driver’s intention, this study proposes a vehicle trajectory prediction model that integrates generative adversarial networks and driving intention recognition. The model predicts vehicle trajectories under a generative adversarial network framework and introduces a deep neural network-based lane change intention recognition module to identify the driver’s lane change intention. A comparison test with LSTM, S-LSTM, CS-LSTM and S-GAN models is carried out on the public data set NGSIM. The experimental results show that compared with other trajectory prediction models, the CS-DNN-GAN model proposed in this study has better prediction accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划 (2018YFB1600800)
引用文本:
王雪阳,刘茜.融合变道意图识别的车辆轨迹预测GAN模型.计算机系统应用,2023,32(4):354-360
WANG Xue-Yang,LIU Xi.GAN Model of Vehicle Trajectory Prediction Based on Lane Changing Intention Recognition.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):354-360