###
计算机系统应用英文版:2023,32(4):52-65
本文二维码信息
码上扫一扫!
基于时空图神经网络的商品销量预测
(1.广西中烟工业有限责任公司, 南宁 530001;2.中科知道(北京)科技有限公司, 北京 100190)
Prediction of Commodity Sales Based on Spatiotemporal Graph Neural Network
(1.China Tobacco Guangxi Industrial Co. Ltd., Nanning 530001, China;2.Zhongke Zhidao Technology Co. Ltd., Beijing 100190, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 921次   下载 1623
Received:August 15, 2022    Revised:September 15, 2022
中文摘要: 精准预测商品的销量是提高商品营销效率的前提和基础. 为了更好地预测商品销量, 现有研究人员提出了基于深度神经网络(DNNs)、卷积神经网络(CNNs)、时间序列分析等方法, 但这些方法大多只单方面考虑到商品销售过程中的时间或者空间特征. 同时基于商品销售数据的建模分析发现, 商品的销量和对应的零售商户的空间位置和销售时间有较大的相关性. 为了更加准确地预测某种商品, 在特定商店, 以及在特定时间的销量, 本研究首先构建了以商家为基础的大规模知识图谱系统, 通过一张图的数据模型, 描述商品销售和对应的商圈、商户、用户的相关交互场景. 同时在图模型上增加了商家数据的空间和数据特征, 用于描述商户的时空特性. 最后基于构建的商家知识图谱, 本研究提出了基于图卷积神经网络(GCN)聚合信息获取空间特征, 然后使用长短期记忆(LSTM)提取时间特征, 并将两种特征进行加权结合, 进行商品销量预测. 初步研究结果表明: 基于图和LSTM模型的混合模型的算法预测投放量最为贴近实际销量, 相比于传统的神经网络算法, 该模型预测的平均准确率为89%. 最后通过构建流水线工作流, 将整个商品销量智能预测系统部署到生产环境中, 为实现商品精准化营销提供了智能化决策.
Abstract:Accurate prediction of commodity sales is the premise and basis of improving the efficiency of commodity marketing. In order to better predict commodity sales, existing researchers have proposed methods based on deep neural networks (DNNs), convolutional neural networks (CNNs), time series analysis, etc., nevertheless most of these methods only take into account the temporal or spatial characteristics of the commodity sales process unilaterally. At the same time, based on the modeling analysis of commodity sales data, it is found that there is a great correlation between the commodity sales and the spatial location and sales time of corresponding retail merchants. In order to more accurately predict the sales of a certain commodity in a specific store and at a specific time, this study first constructs a large-scale knowledge graph system based on merchants. Through the data model of a graph, the study describes related interaction scenarios of commodity sales and corresponding business circles, merchants, and users. At the same time, the spatial and data characteristics of merchant data are added to the graph model to describe the spatial and temporal characteristics of merchants. Finally, based on the constructed merchant knowledge graph, the study aggregates information based on a graph convolutional neural network (GCN) to obtain spatial features and then uses long short-term memory (LSTM) to extract temporal features. Furthermore, the study performs a weighted combination on the two features to predict commodity sales. Preliminary research results show that the commodity sales predicted by the hybrid model algorithm based on the graph and LSTM model is the closest to the actual sales. In addition, compared with that of traditional neural network algorithms, the average prediction accuracy of the model is 89%. Finally, by constructing an assembly line workflow, the whole intelligent prediction system of commodity sales is deployed in the production environment, which provides intelligent decision-making for realizing accurate commodity marketing.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
韦泰丞,刘雁兵,张宓觅,刘慎慎,李宁.基于时空图神经网络的商品销量预测.计算机系统应用,2023,32(4):52-65
WEI Tai-Cheng,LIU Yan-Bing,ZHANG Mi-Mi,LIU Shen-Shen,LI Ning.Prediction of Commodity Sales Based on Spatiotemporal Graph Neural Network.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):52-65