###
计算机系统应用英文版:2023,32(3):150-156
本文二维码信息
码上扫一扫!
基于图像识别的对抗鲁棒性评测系统
(1.中电海康集团有限公司, 杭州 311100;2.上海交通大学 电子信息与电气工程学院, 上海 200240)
Adversarial Robustness Evaluation System Based on Image Recognition
(1.Zhongdian Haikang Group Co. Ltd., Hangzhou 311100, China;2.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 664次   下载 1520
Received:August 09, 2022    Revised:September 27, 2022
中文摘要: 深度神经网络的对抗鲁棒性研究在图像识别领域具有重要意义, 相关研究聚焦于对抗样本的生成和防御模型鲁棒性增强, 但现有工作缺少对其进行全面和客观的评估. 因而, 一个有效的基准来评估图像分类任务的对抗鲁棒性的系统被建立. 本系统功能主要为榜单评测展示、对抗算法评测以及系统优化管理, 同时利用计算资源调度和容器调度保证评测任务的进行. 本系统不仅能够为多种攻击和防御算法提供动态导入接口, 还能够从攻防算法的相互对抗过程中全方面评测现有算法优劣性.
中文关键词: 对抗样本  防御模型  对抗鲁棒性
Abstract:The adversarial robustness of deep neural networks is of great significance in the field of image recognition. Relevant studies focus on the generation of adversarial samples and the robustness enhancement of defense models but lack comprehensive and objective evaluation. Thus, an effective benchmark to evaluate the adversarial robustness of image classification tasks is developed. The main functions of this system are list display, adversarial algorithm evaluation, and system optimization management. At the same time, computing resource scheduling and container scheduling are applied to ensure the evaluation task. This system can not only provide a dynamic import interface for a variety of attack and defense algorithms but also evaluate the advantages and disadvantages of the existing algorithms from all aspects in the confrontation between attack and defense algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金联合基金(U20B2072)
引用文本:
章威,李辰琦,胡逢法,王军,钱宸,倪冰冰,赵成龙.基于图像识别的对抗鲁棒性评测系统.计算机系统应用,2023,32(3):150-156
ZHANG Wei,LI Chen-Qi,HU Feng-Fa,WANG Jun,QIAN Chen,NI Bing-Bing,ZHAO Cheng-Long.Adversarial Robustness Evaluation System Based on Image Recognition.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):150-156