###
计算机系统应用英文版:2023,32(3):345-351
本文二维码信息
码上扫一扫!
基于NLWT系数增强的随机失活CNN电机运行状态检测
(贵州大学 电气工程学院, 贵阳 550025)
Motor Running State Detection by Dropout-CNN Based on NLWT Coefficient Enhancement
(The Electrical Engineering College, Guizhou University, Guiyang 550025, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 623次   下载 1533
Received:August 22, 2022    Revised:September 22, 2022
中文摘要: 为了快速有效地从热像仪采集的温度数据中识别出电机的运行故障, 本文根据随机失活、非线性小波变换系数增强(NLWTCE)和卷积神经网络算法相结合对电机图像进行识别. 首先根据热像仪采集的数据建立电机的图像数据集, 通过非线性小波变换(NLWT)将数据进行图像增强, 然后构建改进的卷积神经网络(ICNN)模型, 将提取的特征作为最终的识别特征来进行图像识别, 最后根据与正常电机图像作比较, 识别出故障的电机图像, 实现了有效、准确的识别故障电机图像与正常电机图像. 实验结果表明, 改进的卷积神经网络模型不仅具有较高的识别准确率, 也进一步简化了提取图像特征的复杂过程. 该方法的有效性和合理性得到了验证, 并适用于工程运用中.
Abstract:To identify the running fault of motors quickly and effectively from the temperature data collected by thermal imagers, this study combines dropout, nonlinear wavelet transform coefficient enhancement (NLWTCE), and convolutional neural network (CNN) algorithm to identify the motor image. Firstly, the image dataset of the motor is established according to the data collected by the thermal imager and the data image is enhanced by nonlinear wavelet transform (NLWT). Then an improved CNN (ICNN) model is built to identify the image with the extracted features as the final recognition features. Finally, compared with the normal motor images, the faulty motor images are effectively and accurately identified. The experimental results show that the ICNN model not only has a high recognition accuracy but also further simplifies the complex extraction of image features. The validity and reasonableness of the method are verified, and the method is suitable for engineering application.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(51867006, 61861007); 贵州省科技厅项目(黔科合支撑[2021]一般442, [2022]一般264)
引用文本:
龙慧,马家庆,吴钦木,何志琴,陈昌盛,覃涛.基于NLWT系数增强的随机失活CNN电机运行状态检测.计算机系统应用,2023,32(3):345-351
LONG Hui,MA Jia-Qing,WU Qin-Mu,HE Zhi-Qin,CHEN Chang-Sheng,QIN Tao.Motor Running State Detection by Dropout-CNN Based on NLWT Coefficient Enhancement.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):345-351