###
计算机系统应用英文版:2023,32(4):141-148
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于CNN与Transformer的医学图像分割
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.山东大学 大数据技术与认知智能实验室, 济南 250100;4.中国人民解放军总医院, 北京 100039;5.中科智禾数字科技(北京)有限公司, 北京 101499)
Medical Image Segmentation Based on CNN and Transformer
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Laboratory of Big Data and Artificial Intelligence Technology, Shandong University, Jinan 250100, China;4.Chinese PLA General Hospital, Beijing 100039, China;5.Zhongke Zhihe Digital Technology (Beijing) Co. Ltd., Beijing 101499, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1056次   下载 2614
Received:August 23, 2022    Revised:September 27, 2022
中文摘要: 医学图像对疾病的诊断、治疗和评估均有所帮助, 准确分割医学图像中的器官对于辅助医生的诊断具有重要的实际意义. 由于医学图像中各器官部位与周围组织的图像对比度低, 不同器官的边缘和形状也会存在很大差异, 从而增加了分割的难度. 针对这些问题, 本文提出了一种基于卷积神经网络和Transformer的医学图像语义分割网络, 有效提高了医学图像语义分割的精度. 特征提取部分使用ResNet-50网络结构, 在特征提取后使用Transformer模块来扩大感受野. 在上采样过程中加入多个跳跃连接层, 充分利用各阶段的特征提取信息, 来恢复至与输入图像相近的分辨率. 在胃肠道医学图像分割数据集上的实验结果证明本文的方法可以有效分割医学图像中的器官组织, 提升分割准确率.
Abstract:Medical images are helpful for the diagnosis, treatment, and evaluation of diseases. Accurate segmentation of organs in medical images is of great practical significance to assist doctors in diagnosis. Due to the low contrast between organ parts and surrounding tissues in medical images, the edges and shapes of different organs are very different, which increases the difficulty of segmentation. To solve these problems, this study proposes a semantic segmentation network for medical images based on a convolutional neural network and Transformer, which effectively improves the accuracy of semantic segmentation of medical images. The feature extraction part uses a ResNet-50 network structure, and a Transformer module is employed to expand the receptive field after feature extraction. In the process of up-sampling, multiple skip connection layers are added, and the feature extraction information of each stage is fully utilized to make the resolution close to that of input images. The experimental results on the segmentation dataset of gastrointestinal medical images prove that the proposed method can effectively segment organs and tissues in medical images and improve the segmentation accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:科技部重点研发计划(2019YFC0840705)
引用文本:
王金祥,付立军,尹鹏滨,李旭.基于CNN与Transformer的医学图像分割.计算机系统应用,2023,32(4):141-148
WANG Jin-Xiang,FU Li-Jun,YIN Peng-Bin,LI Xu.Medical Image Segmentation Based on CNN and Transformer.COMPUTER SYSTEMS APPLICATIONS,2023,32(4):141-148