###
计算机系统应用英文版:2023,32(2):258-265
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于传递熵与改进K2算法生成报警传播网络
(南京邮电大学 通信与信息工程学院, 南京 210003)
Generation of Alarm Propagation Network Based on Transfer Entropy and Improved K2 Algorithm
(School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 623次   下载 1208
Received:July 04, 2022    Revised:September 07, 2022
中文摘要: 工业报警变量数量增多所导致的“报警泛滥”问题, 严重影响了报警系统的应有功能. 针对此问题, 提出一种从过程报警数据集中学习报警变量传递关系的方法. 首先, 利用传递熵具有准确衡量一阶或多阶自相关性变量间因果关系的特点, 识别变量间的因果关系. 其次以变量间熵大小为准则, 保留传递信息量较大的节点, 最后考虑变量在不同状态所占时间比重对K2算法进行改进, 学习得到最终的报警传播网络. 通过在田纳西伊斯曼过程数据集上的验证发现, 该方法能够对报警发生的根本原因做出判断并较好地学习得到报警传播路径.
Abstract:The problem of “alarm flooding” caused by the increase in the number of industrial alarm variables has seriously affected the proper functions of alarm systems. In response, this study proposes a method to learn the transfer relationship of alarm variables from the process alarm data set. First, leveraging the ability of transfer entropy to accurately measure the causal relationship between variables with first-order or multi-order autocorrelation, the study identifies the causal relationship between variables. Second, depending on the entropy value between variables, the nodes that transmit a large amount of information are reserved. Finally, the K2 algorithm is improved by considering the time proportions of variables in different states, and the final alarm propagation network is obtained by learning. The verification on the Tennessee Eastman process data set reveals that the method can judge the root cause of the alarm and well achieve alarm propagation paths through learning.
文章编号:     中图分类号:    文献标志码:
基金项目:江苏省自然科学基金(BK20191381)
引用文本:
柯永琦.基于传递熵与改进K2算法生成报警传播网络.计算机系统应用,2023,32(2):258-265
KE Yong-Qi.Generation of Alarm Propagation Network Based on Transfer Entropy and Improved K2 Algorithm.COMPUTER SYSTEMS APPLICATIONS,2023,32(2):258-265