本文已被:浏览 584次 下载 1932次
Received:July 18, 2022 Revised:September 07, 2022
Received:July 18, 2022 Revised:September 07, 2022
中文摘要: 风能作为清洁能源为改善我国能源结构发挥着越来越重要的作用. 风电场机组及设备的数据可能会包含机组或风场的隐私敏感信息, 这些隐私数据一旦被泄露, 将会为风电场带来巨大的经济风险和法律风险. 联邦学习作为重要的隐私计算手段, 能够保证原始数据不出本地的情况下完成模型的建模和推理, 实现各参与方在互不泄露隐私的前提下实现联合计算, 从而有效应对风电数据分析面临的挑战. 但是, 联邦学习计算过程中存在大量的通信开销, 这成为限制联邦学习技术在风电场景下应用的关键性能瓶颈. 因此, 本文以经典的联邦学习算法XGBoost为例, 深入分析了联邦学习计算过程中的通信问题, 提出采用RDMA作为底层传输协议的解决方案, 设计并实现了一套高性能联邦学习平台通信库, 有效提升了联邦学习系统的性能.
Abstract:As clean energy, wind power plays an increasingly important role in improving China’s energy structure. Data on wind farm units and equipment may contain relevant privacy-sensitive information. Once the information is divulged, it will bring huge economic and legal risks to the wind farm. Federated learning (FL) is an important privacy-preserving computing technique, through which model training and inference are completed without transmitting raw data, so as to achieve joint computation among all participants without privacy disclosure and effectively deal with challenges in analyzing wind power data. However, significant communication overheads generated during FL computation have become a major performance bottleneck that has limited the application of the FL technique in wind power scenarios. Therefore, this study takes the typical FL algorithm, namely, XGBoost, as an example and deeply analyzes the communication problems in FL computation. In addition, the study proposes a solution that RDMA shall be utilized as the underlying transport protocol and designs a set of high-performance FL platform communication libraries, which effectively improves the performance of the FL system.
keywords: wind power federated learning (FL) communication optimization remote direct memory access (RDMA)
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
于航,周继威,张涵,孔祥锋,张玉会.面向风电场景的联邦学习平台高性能通信优化.计算机系统应用,2023,32(3):116-124
YU Hang,ZHOU Ji-Wei,ZHANG Han,KONG Xiang-Feng,ZHANG Yu-Hui.Optimization of High-performance Communication for Federated Learning in Wind Power.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):116-124
于航,周继威,张涵,孔祥锋,张玉会.面向风电场景的联邦学习平台高性能通信优化.计算机系统应用,2023,32(3):116-124
YU Hang,ZHOU Ji-Wei,ZHANG Han,KONG Xiang-Feng,ZHANG Yu-Hui.Optimization of High-performance Communication for Federated Learning in Wind Power.COMPUTER SYSTEMS APPLICATIONS,2023,32(3):116-124