###
计算机系统应用英文版:2022,31(6):368-375
本文二维码信息
码上扫一扫!
改进FP-growth融合K-means算法的西装定制搭配方法
(西安工程大学 计算机科学学院, 西安 710048)
Suit Customization Matching Method Based on Improved FP-Growth and K-means Algorithm
(School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 540次   下载 933
Received:August 18, 2021    Revised:September 13, 2021
中文摘要: 为解决西装定制企业中用户定制款式信息未充分利用这一问题, 结合关联规则FP-growth算法对多维大型数据集进行挖掘时, 存在内存资源消耗较大以及执行效率不高的问题, 本文提出一种改进FP-growth融合K-means算法的西装定制搭配挖掘方法, 对FP-growth算法从使用哈希表建立项头表、有序FP-tree代替传统FP-tree建树过程和新增不平衡比评价指标3个角度对其进行改进. 实验结果表明, 与其他关联规则算法对比, 改进FP-growth算法的内存资源使用减少了约6.7%、执行效率提高了15%左右; 通过人工审核实验结果得出, 该算法将挖掘出用户感兴趣且有意义的关联规则, 验证该算法提出的可行性.
Abstract:The suit customization enterprise fails to fully utilized the information about customized style. The FP-growth algorithm in the association rule consumes a large amount of memory with low execution efficiency when it comes to multidimensional big data. Aiming at such issues above, this study proposes an improved mining method for the suit customization based on FP-growth and K-means algorithm. It improves the FP-growth algorithm from three aspects: using hash table to establish item header table, replacing traditional FP-tree with ordered FP-tree, and adding imbalance ratio as the new evaluation index. Experimental results show that compared with other association rule algorithms, the improved FP-growth algorithm reduces the memory consumption by about 6.7% and increases the execution efficiency by about 15%. Through the manual review of experimental results, this algorithm can find meaningful association rules attractive to users, verifying the the proposed algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省科技成果转移与推广计划(2019CGXNG-018)
引用文本:
赵鑫,毋涛.改进FP-growth融合K-means算法的西装定制搭配方法.计算机系统应用,2022,31(6):368-375
ZHAO Xin,WU Tao.Suit Customization Matching Method Based on Improved FP-Growth and K-means Algorithm.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):368-375