###
计算机系统应用英文版:2022,31(4):369-374
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
KTBoost预测模型的改进及应用
(西安工程大学 计算机科学学院, 西安 710048)
Improvement and Application of KTBoost Prediction Model
(School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 672次   下载 1110
Received:July 06, 2021    Revised:August 04, 2021
中文摘要: 针对目前KTBoost预测模型中存在的精度低、拟合效果较差的问题, 给出一种改进的KTBoost预测模型. 首先提出了OGWO算法, 使用反正切函数对传统灰狼优化算法(GWO)中的收敛因子进行优化, 以解决算法中的无效迭代问题, 然后运用OGWO算法对KTBoost模型中的超参数进行优化, 从而提高模型预测的精度; 最后, 为了验证模型的可行性, 将该模型及其他预测模型应用于交通流预测场景中进行对比. 实验结果表明: 相较于RBF模型、随机森林模型(RFR)、KTBoost模型、OGWO-RBF模型、OGWO-RFR模型, OGWO-KTBoost预测模型拟合效果更好, 其决定系数值达到0.8265, 在实际应用中有较好的预测效果.
Abstract:An improved KTBoost prediction model is proposed to address the low accuracy and poor fitting performance of the current KTBoost prediction model. First, the OGWO algorithm is put forward to solve the invalid iteration of the traditional gray wolf optimization (GWO) algorithm by using the arctangent function to optimize its convergence factor. Then, the OGWO algorithm is employed to optimize the hyperparameters in the KTBoost model, thereby improving the prediction accuracy of the model. Finally, the improved model and other prediction models are applied to traffic flow prediction scenarios for comparison to verify the feasibility of the model. The experimental results show that compared with the RBF model, random forest regression (RFR) model, KTBoost model, OGWO-RBF model, and OGWO-RFR model, the OGWO-KTBoost prediction model has better fitting performance and a better forecasting effect in practical application with its coefficient value of determination being 0.8265.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省自然科学基金(2019JQ-849)
引用文本:
张曼,牟莉.KTBoost预测模型的改进及应用.计算机系统应用,2022,31(4):369-374
ZHANG Man,MU Li.Improvement and Application of KTBoost Prediction Model.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):369-374