###
计算机系统应用英文版:2022,31(5):238-245
本文二维码信息
码上扫一扫!
基于VMD-BiLSTM-BLS模型的短时交通流预测
(南京信息工程大学 自动化学院, 南京 210044)
Short-term Traffic Flow Prediction Based on VMD-BiLSTM-BLS Model
(School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 561次   下载 1818
Received:July 26, 2021    Revised:August 20, 2021
中文摘要: 准确的短时交通流预测在智慧交通系统中至关重要. 近年来, 双向长短时记忆网络(BiLSTM)被广泛地应用于短时交通流预测中, 但由其结构特点, 易产生过拟合现象, 从而影响预测精度. 鉴于宽度学习系统(BLS)能够解决过拟合的问题, 本文将深度学习与宽度学习相结合. 进一步地, 为减少噪声对车流量数据的干扰, 引入变分模态分解(VMD)进行降噪处理, 提出VMD-BiLSTM-BLS短时车流量预测模型. 本文以PeMS交通流数据为例, 进行预测分析. 结果表明: 与基线模型、消融模型和现有模型进行对比, 本文模型预测精度均表现最佳, 能够更好的反应路口短时交通流的状况.
Abstract:Accurate short-term traffic flow forecasting is very important in smart transportation systems. In recent years, bi-directional long-short term memory (BiLSTM) has been widely used in short-term traffic flow prediction, but due to its structural characteristics, it is prone to overfitting, affecting the prediction accuracy. Given that the broad learning system (BLS) can solve the problem of overfitting, this study combines deep learning with broad learning. Furthermore, the variational mode decomposition (VMD) is introduced for noise reduction so as to minimize the interference of noise on the traffic data. By doing this, the VMD-BiLSTM-BLS short-term traffic flow prediction model is proposed in this paper. The PeMS traffic flow data is used as an example for predictive analysis, and the results show that compared with the baseline model, the ablation model, and the existing model, the proposed model has the best prediction accuracy and can better reflect the short-term traffic flow at the intersection.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62076136)
引用文本:
卢海鹏,韩莹,张凯,张龄允,丁昱杰.基于VMD-BiLSTM-BLS模型的短时交通流预测.计算机系统应用,2022,31(5):238-245
LU Hai-Peng,HAN Ying,ZHANG Kai,ZHANG Ling-Yun,DING Yu-Jie.Short-term Traffic Flow Prediction Based on VMD-BiLSTM-BLS Model.COMPUTER SYSTEMS APPLICATIONS,2022,31(5):238-245