###
计算机系统应用英文版:2022,31(3):310-317
本文二维码信息
码上扫一扫!
GRU和GBDT混合模型在早产风险预测中的应用
(1.杭州师范大学 信息科学与技术学院, 杭州 311121;2.移动健康管理教育部工程研究中心, 杭州 311121;3.杭州师范大学 医学院, 杭州 311121;4.杭州市妇产科医院, 杭州 310008)
Application of GRU and GBDT Hybrid Model in Risk Prediction of Premature Birth
(1.School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China;2.Engineering Research Center of Mobile Health Management System (Ministry of Education), Hangzhou 311121, China;3.Division of Health Sciences, Hangzhou Normal University, Hangzhou 311121, China;4.Hangzhou Women’s Hospital, Hangzhou 310008, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 628次   下载 1778
Received:May 28, 2021    Revised:July 01, 2021
中文摘要: 早产是新生儿死亡及病残的首要原因, 且影响新生儿的远期健康. 然而早产的准确预测一直是医学上的一个难题. 目前医学上早产的早期筛查多基于特殊检查, 但因成本核算等问题难以大规模临床应用, 而电子病历的普及和人工智能技术的发展, 为产科疾病的早期风险评估提供支持. 本文利用产科电子病历的诊疗信息, 构建 GRU和GBDT的混合模型预测早产. 混合模型利用GRU在孕妇多次产检信息中探究早产发生的概率, 并将结果融入孕前和28周前末次产检数据, 最后利用GBDT对孕妇进行更加精确的早产风险预测. 实验结果表明, 基于GRU和GBDT的早产预测模型在AUC和ROC等评估指标上优于其他单一模型, 本研究方法可有效帮助产科医护人员在妊娠早中期判断孕妇是否有早产风险.
中文关键词: 电子病历  早产预测  GRU  GBDT  混合模型
Abstract:Premature birth is the primary cause of neonatal death and disability, which can affect the long-term health of newborns. However, the accurate prediction of premature birth is a difficult problem in the medical field. The early screening of premature birth in medicine is mostly based on special examinations, but it is difficult to be applied to large-scale clinical practice due to cost accounting and other problems. The popularization of electronic medical records and the development of artificial intelligence technology provide support for early risk assessment of obstetric diseases. This paper uses the diagnosis and treatment information of obstetric electronic medical records and proposes a hybrid model of GRU and GBDT to predict the risk of premature birth. The hybrid model uses GRU to explore the probability of premature birth in multiple antenatal examination information of pregnant women and integrates the results into the pregnancy data and the last antenatal data before 28 weeks. Finally, GBDT is used to predict the risk of premature birth for higher accuracy. The experimental results show that evaluation indexes such as AUC and ROC of the prediction method based on GRU and GBDT are better than those of other single machine learning models. The proposed method can provide a reference for the obstetric medical staff to judge the risk of premature birth in the early and middle stages of pregnancy.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省省级重点研发计划 (2020C03107); 浙江省自然科学基金(LGF20F020009); 杭州市属高校优秀创新团队; 国家卫生健康委科学研究基金——浙江省医药卫生重大科技计划(WKJ-ZJ-1911); 杭州市卫生科技计划(ZD20200035&OO2019054)
引用文本:
吴忆娜,张艺超,袁贞明,胡文胜,卢莎,孙晓燕,吴英飞.GRU和GBDT混合模型在早产风险预测中的应用.计算机系统应用,2022,31(3):310-317
WU Yi-Na,ZHANG Yi-Chao,YUAN Zhen-Ming,HU Wen-Sheng,LU Sha,SUN Xiao-Yan,WU Ying-Fei.Application of GRU and GBDT Hybrid Model in Risk Prediction of Premature Birth.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):310-317