###
计算机系统应用英文版:2022,31(3):1-8
本文二维码信息
码上扫一扫!
流程挖掘算法综述
(航天工程大学 复杂电子系统仿真重点实验室, 北京 101400)
Research on Process Mining Algorithm
(Key Laboratory of Science and Technology on Complex Electronic System Simulation, Space Engineering University, Beijing 101400, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1534次   下载 7804
Received:May 21, 2021    Revised:June 21, 2021
中文摘要: 由于流程挖掘技术的快速发展, 流程挖掘算法种类增加迅速, 已有的算法研究文章介绍已不全面. 针对这一情况对迄今为止的流程挖掘主要算法进行系统性的分析总结. 首先对流程挖掘算法现状进行总体分析, 接着根据算法特性将流程挖掘算法分为传统的流程挖掘算法和基于计算智能和机器学习技术的流程挖掘算法两大类, 简要介绍其中代表性算法的基本思想和相关步骤, 最后比较了各类算法的优势和不足. 其中关于算法的分类和总结有助于初学者梳理流程挖掘领域相关算法知识, 而对发展现状和算法比较的分析则可以启发研究人员有待突破的方面.
Abstract:Due to the rapid development of process mining technology, the variety of process mining algorithms has increased rapidly, and the introduction of existing algorithm research articles is no longer comprehensive. In view of this, we systematically analyze and summarize process mining algorithms so far. Firstly, we analyze the current situation of process mining algorithms in general and then classify them into two categories according to their characteristics: traditional process mining algorithms and process mining algorithms based on computational intelligence and machine learning technologies. Meanwhile, we briefly introduce the basic ideas and related steps of each subclass of representative algorithms and discuss the current advantages and disadvantages of the algorithms. Finally, suggestions regarding algorithm research and improvement in the next step are proposed. The classification and summary of algorithms can help beginners to sort out relevant algorithm knowledge in the field of process mining, and the analysis of the development status and algorithm comparison can guide researchers in areas that need to be broken through.
文章编号:     中图分类号:    文献标志码:
基金项目:国防科技重点实验室基础研究项目(DXZT-JC-ZZ-2018-002, DXZT-JC-ZZ-2017-001)
引用文本:
林文祥,刘德生.流程挖掘算法综述.计算机系统应用,2022,31(3):1-8
LIN Wen-Xiang,LIU De-Sheng.Research on Process Mining Algorithm.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):1-8