本文已被:浏览 561次 下载 1839次
Received:June 22, 2021 Revised:July 14, 2021
Received:June 22, 2021 Revised:July 14, 2021
中文摘要: 针对复杂战场环境下战损数据的多源性和不确定性, 本文根据战损等级评定的非线性特点, 提出了一种基于置信规则库(belief rule base, BRB)和证据推理(evidential reasoning, ER)的装备战损等级评定方法. 首先, 在战损等级评定影响因素分析的基础上, 建立了一种新的融合多种特征信息的BRB-ER战损等级评定模型; 其次, 为解决传统专家系统中初始BRB参数不准确的问题, 利用局部粒子群算法对模型初始参数进行优化, 从而提高战损等级评定的准确性; 最后, 以某战损试验为例, 对基于置信规则库推理的装备战损等级评定方法进行了验证和对比. 结果表明, 该方法用于战时装备战损等级评定具有较高的准确度和可靠性, 从而为装备保障指挥员进行战场维修决策提供辅助支持.
Abstract:According to the nonlinear characteristics of battle damage assessment (BDA), this study proposes an equipment BDA method based on the belief rule base (BRB) and evidential reasoning (ER) in view of the multi-source and uncertain battle damage data in a complicated battlefield. Firstly, through the analysis of factors affecting BDA, a new BRB-ER model integrating multiple characteristics is presented. Secondly, to solve the problem of inaccurate parameters in the initial BRB of the traditional expert system, we use the local particle swarm optimization algorithm to optimize the initial parameters of the model and thus improve the accuracy of BDA. Finally, a battle damage test is taken as an example to verify and compare methods for equipment BDA based on the reasoning of BRB. The results show that the proposed method can effectively evaluate the equipment BDA and provide assistant support for a commander to make battlefield maintenance decisions.
keywords: belief rule base (BRB) battle damage assessment (BDA) parameter optimization evidential reasoning (ER) particle swarm optimization (PSO)
文章编号: 中图分类号: 文献标志码:
基金项目:预研基金重点项目(41412030301, 30110040301)
引用文本:
刘嘉迪,郝建国,黄健.基于置信规则库推理的装备战损等级评定.计算机系统应用,2022,31(4):213-220
LIU Jia-Di,HAO Jian-Guo,HUANG Jian.Techniques for Equipment Battle Damage Assessment Based on Belief Rule Base Reasoning.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):213-220
刘嘉迪,郝建国,黄健.基于置信规则库推理的装备战损等级评定.计算机系统应用,2022,31(4):213-220
LIU Jia-Di,HAO Jian-Guo,HUANG Jian.Techniques for Equipment Battle Damage Assessment Based on Belief Rule Base Reasoning.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):213-220