###
计算机系统应用英文版:2022,31(4):244-252
本文二维码信息
码上扫一扫!
混合鲸鱼优化算法求解柔性作业车间调度问题
(上海理工大学 管理学院, 上海 200093)
Hybrid Whale Algorithm for Flexible Job Shop Scheduling Problem
(Business School, University of Shanghai for Science & Technology, Shanghai 200093, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 555次   下载 1472
Received:June 22, 2021    Revised:July 14, 2021
中文摘要: 提出一种混合正余弦鲸鱼优化算法, 将其应用于柔性作业车间调度问题的研究, 以最小化最大完工时间为目标; 首先进行两段式编码, 使连续型鲸鱼优化算法可应用于柔性作业车间调度问题, 并对基本鲸鱼优化算法加入非线性收敛因子平衡搜索与开发阶段; 以正余弦算法策略改进鲸鱼个体位置更新方式与螺旋方式, 提升算法寻优能力; 最后以实验数据验证混合正余弦鲸鱼算法在求解柔性作业车间调度问题方面的有效性.
Abstract:The existing parking lot classification methods are exposed to problems of low-level automation and high equipment and deployment costs, and the existing detection algorithms have low recall rates and poor detection accuracy. To solve these problems, this study proposes a vision-based parking space detection and classification algorithm to improve the utilization efficiency of parking lots. First, parking spaces are detected to help build a parking space table andincrementally expand the parking space classification model dataset. Then, the test dataset is used to train the support vector machine (SVM) model for parking space classification. Finally, real-time judgment of the parking space conditions is made on every parking space based on the surveillance video data. The experimental results show that under different lighting conditions, the recall rate of the line detection of parking spaces is above 94%, and the accuracy of the parking space classification model is above 95%. The algorithm boasts a high degree of automation, good accuracy, simple deployment, and high application value.
文章编号:     中图分类号:    文献标志码:
基金项目:上海市科委软科学重点项目(20692104300); 国家自然科学基金(71840003); 上海理工大学科技发展基金(2018KJFZ043)
引用文本:
李宝帅,叶春明.混合鲸鱼优化算法求解柔性作业车间调度问题.计算机系统应用,2022,31(4):244-252
LI Bao-Shuai,YE Chun-Ming.Hybrid Whale Algorithm for Flexible Job Shop Scheduling Problem.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):244-252