###
计算机系统应用英文版:2022,31(4):196-203
本文二维码信息
码上扫一扫!
改进的SRGAN图像超分辨率重建算法
(华南师范大学 软件学院, 佛山 528225)
Improved SRGAN Image Super-Resolution Reconstruction Algorithm
(School of Software, South China Normal University, Foshan 528225, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 935次   下载 2174
Received:June 14, 2021    Revised:July 07, 2021
中文摘要: 图像超分辨率重建技术可以提高图像的分辨率, 在医学、军事等领域都发挥着重要作用. 传统的 SRGAN 图像超分辨率重建算法训练收敛速度慢, 高频纹理锐化过度导致部分细节扭曲, 影响重建图像质量. 针对以上问题, 对传统 SRGAN 模型的生成网络和损失函数进行改进, 用于图像超分辨率重建. 采用稀疏残差密集网络(SRDN)代替传统的 SRResNet 作为生成网络, 以实现对低分辨率图像特征的充分利用, 同时利用 SRDN 稀疏性的连接方式和深度可分离卷积思想, 减少模型的参数量. 此外, 提出融合 VGG 低频特征和高频特征的联合感知损失, 结合均方误差损失对网络的感知损失函数进行改进. 在Set5、Set14、BSD100数据集进行测试, 改进SRGAN 算法的峰值信噪比(PSNR)、结构相似度(SSIM)和平均选项得分(MOS)3个评价指标结果均优于传统SRGAN算法, 重建图像的细节部分更加清晰, 整体表现出较好的鲁棒性和综合性能.
Abstract:Image super-resolution reconstruction technology can improve image resolution, which plays an important role in medical, military and other fields. The traditional super-resolution generative adversarial network (SRGAN) algorithm for image super-resolution reconstruction has a slow training convergence speed, and excessive sharpening of high-frequency texture leads to distortion of some details, which affects the quality of reconstructed images. To address these problems, the generator network and loss function of the traditional SRGAN model are improved for image super-resolution reconstruction. The sparse residual dense network (SRDN) is used instead of the traditional SRResNet as the generator network to fully utilize low-resolution image features. Meanwhile, the sparse connection method of SRDN and the depthwise separable convolution are used to reduce the number of model parameters. In addition, a joint perceptual loss of fused the low-frequency features and high-frequency features of VGG is proposed to improve the network’s perceptual loss function by combining with the mean square error loss. Tested on the Set5, Set14, and BSD100 data sets, the results show that the improved SRGAN algorithm outperforms the traditional SRGAN algorithm in three evaluation indexes, namely, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and mean option score (MOS), and the details of the reconstructed images are clearer. The improved SRGAN algorithm shows better overall robustness and comprehensive performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金面上项目(61876067); 广东省自然科学基金面上项目(2019A1515011375); 广州市科技计划重点领域研发计划(202007030005)
引用文本:
欧奕敏,魏朝勇,梁艳,江世杰.改进的SRGAN图像超分辨率重建算法.计算机系统应用,2022,31(4):196-203
OU Yi-Min,WEI Chao-Yong,LIANG Yan,JIANG Shi-Jie.Improved SRGAN Image Super-Resolution Reconstruction Algorithm.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):196-203