###
计算机系统应用英文版:2022,31(4):154-162
本文二维码信息
码上扫一扫!
基于RF-Net的CT图像肋骨骨折识别
(湘潭大学 计算机学院·网络空间安全学院, 湘潭 411105)
Rib Fracture Classification on CT Images Based on RF-Net
(School of Computer Science & School of Cyberspace Science, Xiangtan University, Xiangtan 411105, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 800次   下载 1550
Received:June 04, 2021    Revised:July 07, 2021
中文摘要: 肋骨骨折是临床医学中一种常见的疾病, 人工判别骨折的方法具有工作量大、识别难度大等问题. 为了高效实现肋骨骨折的计算机辅助诊断, 本文提出了一种基于RF-Net(Rib Fracture Network)的肋骨骨折识别算法. 该算法首先利用生成对抗网络对原始数据进行数据增强扩建数据集, 以缓解过拟合现象且使模型进行有效训练. 其次, 算法使用RF-block提取肋骨的多尺度特征进行融合, 增强网络的特征提取能力. 同时, 本文使用压缩策略对模型结构进行优化, 从而减少模型计算代价. 最后, 本文在来自于医院的肋骨数据集上开展实验, 结果表明本文方法在准确率、AUC值、敏感度、特异度多个指标上表现优异. 与现有方法相比, 本文算法可更准确快速的对肋骨骨折进行识别, 能够为医生的诊断提供可靠依据.
Abstract:Rib fracture is a common disease in clinical medicine. However, the diagnosis of fracture with the manual method is heavy in workload and difficult. To help doctors to reduce workload and improve detection sensitivity , we present a rib fracture classification algorithm based on a rib fracture network (RF-Net). Firstly, generative adversarial networks are used to generate synthetic medical images to enlarge the data size. Then, these data are input into our RF-Net to yield classification results. The data augmentation method can ease the overfitting phenomenon and improve the model training. In RF-Net, we use RF-block to replace the ordinary depth wise separable convolution , which can extract multi-scale features to strengthen the feature extraction ability of the entire network. Furthermore, considering the high requirement for fast speed, we apply the compression strategy to optimize some high-dimension modules to decrease the computation cost. The comparison with the existing deep learning models demonstrates that our method achieves the best result in multiple indicators, including accuracy, the area under the curve (AUC), sensitivity, and specificity. Besides, ablation experiments are conducted to verify the robustness of the algorithm and the effectiveness of each module. Finally, the results show that our method can classify the disease more accurately and faster than existing state-of-the-art approaches, which can provide a reliable basis for diagnosis.
文章编号:     中图分类号:    文献标志码:
基金项目:湖南省大学生创新性实验计划(S201910530047)
引用文本:
彭诚,黄扬林,郭建强.基于RF-Net的CT图像肋骨骨折识别.计算机系统应用,2022,31(4):154-162
PENG Cheng,HUANG Yang-Lin,GUO Jian-Qiang.Rib Fracture Classification on CT Images Based on RF-Net.COMPUTER SYSTEMS APPLICATIONS,2022,31(4):154-162