本文已被:浏览 818次 下载 1472次
Received:April 20, 2021 Revised:May 19, 2021
Received:April 20, 2021 Revised:May 19, 2021
中文摘要: 我国是农业大国, 在进行农业生产过程中, 对土壤的湿度进行精准预测具有非常重要的意义. 针对传统BP (back propagation)神经网络在预测过程中会出现局部最小化以及收敛速度慢的问题, 本文将改进的遗传算法(genetic algorithm)应用到传统BP神经网络模型当中, 提出了一种自适应遗传算法优化BP神经网络的土壤湿度预测方法. 通过Matlab仿真软件建立改进遗传算法优化BP神经网络的预测模型, 并且对哈尔滨地区玉米地的土壤湿度进行实验. 结果表明, 该模型的精度高于未优化的BP神经网络. 该模型能够大量减少湿度传感器的使用, 为农业生产减少了成本.
Abstract:China is a large agricultural country. In the process of agricultural production, it is of great significance to accurately predict the soil moisture. In view of the local minimization and slow convergence in the prediction process of the traditional back propagation (BP) neural network, an improved genetic algorithm is applied to the traditional BP neural network model in this study. A soil moisture prediction method is proposed that optimizes the BP neural network by the adaptive genetic algorithm. A prediction model of the BP neural network optimized by the improved genetic algorithm is established by the Matlab simulation software and experimented on the soil moisture of corn fields in Harbin. The results show that the accuracy of the model is higher than that of the unoptimized BP neural network model. This model can greatly reduce the use of moisture sensor and thus reduce the agricultural production cost.
文章编号: 中图分类号: 文献标志码:
基金项目:中央引导地方科技发展项目(SBZY2021E006)
引用文本:
王佳楠,王玉莹,何淑林,时龙闽,张艳滴,孙海洋,刘勇.基于改进遗传算法优化BP神经网络的土壤湿度预测模型.计算机系统应用,2022,31(2):273-278
WANG Jia-Nan,WANG Yu-Ying,HE Shu-Lin,SHI Long-Min,ZHANG Yan-Di,SUN Hai-Yang,LIU Yong.Optimized BP Neural Network Model Based on Improved Genetic Algorithm for Soil Moisture Prediction.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):273-278
王佳楠,王玉莹,何淑林,时龙闽,张艳滴,孙海洋,刘勇.基于改进遗传算法优化BP神经网络的土壤湿度预测模型.计算机系统应用,2022,31(2):273-278
WANG Jia-Nan,WANG Yu-Ying,HE Shu-Lin,SHI Long-Min,ZHANG Yan-Di,SUN Hai-Yang,LIU Yong.Optimized BP Neural Network Model Based on Improved Genetic Algorithm for Soil Moisture Prediction.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):273-278