###
计算机系统应用英文版:2022,31(2):241-245
本文二维码信息
码上扫一扫!
基于XGBoost的低渗油田储层粒度预测
(1.东北石油大学 计算机与信息技术学院, 大庆 163318;2.大庆油田有限责任公司 储运销售分公司, 大庆 163453)
Prediction of Reservoir Grain Size in Low Permeability Oilfield Based on XGBoost
(1.School of Computer & Information Technology, Northeast Petroleum University, Daqing 163318, China;2.Storage Sales Branch, Daqing Oilfield Co. Ltd., Daqing 163453, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 640次   下载 1362
Received:April 23, 2021    Revised:May 19, 2021
中文摘要: 针对低渗油田储层粒度预测问题, 本文提出利用机器学习中的极致剃度提升树(extreme gradient boosting, XGBoost)来对低渗油田储层粒度进行预测的方案. 首先, 根据问题构建合适的XGBoost模型, 然后根据已有的岩心储层粒度特征值与其余测井信息的关系, 选取适用于粒度预测的测井曲线建立样本库, 最后利用样本库数据对建立的XGBoost模型进行训练, 训练后的模型即可预测研究区域未知的储层粒度特征. 结果表明, 本文所设计的XGBoost模型对低渗油田的储层粒度预测方案在计算效率、预测准确率等方面均优于BP神经网络.
中文关键词: 机器学习  神经网络  XGBoost  储层粒度
Abstract:To address the prediction problems of reservoir grain sizes in low permeability oilfields, this study proposes a scheme for predicting reservoir grain sizes in low permeability oilfields with the extreme gradient boosting (XGBoost) in machine learning. First, a proper XGBoost model is built in consideration of the problems. Then, well logging curves suitable for grain size prediction are selected to create a sample database according to the established relationships of the characteristic values of the core reservoir grain size with other logging information. Finally, sample database data are employed to train the newly built XGBoost model. The trained model can predict unknown reservoir grain size characteristics in a study area. The results show that the XGBoost model designed in this study is superior to the back propagation (BP) neural network in calculation efficiency and prediction accuracy of reservoir grain sizes in low permeability oilfields.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
李建平,张小庆,李莹.基于XGBoost的低渗油田储层粒度预测.计算机系统应用,2022,31(2):241-245
LI Jian-Ping,ZHANG Xiao-Qing,LI Ying.Prediction of Reservoir Grain Size in Low Permeability Oilfield Based on XGBoost.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):241-245