###
计算机系统应用英文版:2021,30(7):253-258
本文二维码信息
码上扫一扫!
基于LSTM网络的Web软件系统实时剩余寿命预测
(太原科技大学 计算机科学与技术学院, 太原 030024)
Real-Time Residual Life Prediction of Web-Based Software System Based on LSTM
(School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 833次   下载 1573
Received:October 21, 2020    Revised:November 18, 2020
中文摘要: Web软件系统剩余使用寿命的预测精度是影响Web软件系统抗衰决策的重要方面, 为此, 提出了一种基于长短期记忆网络的Web软件系统实时剩余寿命预测方法. 首先搭建加速寿命测试实验平台, 收集反映Web软件系统老化趋势的性能指标, 然后根据该指标数据的时序特性, 建立了一种基于长短时记忆网络(LSTM)的Web软件系统实时剩余寿命预测模型, 并对该模型进行了训练. 实验结果表明, 该预测模型能够有效对Web软件系统的剩余寿命进行实时预测, 具有更好的准确性和适用性. 将所提模型应用于Web软件系统寿命预测中, 能够有效完成预测, 该方法为优化系统抗衰决策提供了技术支撑.
Abstract:The prediction accuracy of the Remaining Useful Life (RUL) is of vital importance to rejuvenation decision of Web-based software systems, so we propose a real-time prediction method for the remaining useful life of Web-based software systems based on the Long Short-Term Memory (LSTM) network. Firstly, an accelerated life test platform is built to collect the performance indicators of the aging of Web-based software systems. Then, according to the time-series characteristics of indicator data, an LSTM-based real-time prediction model for the remaining useful life of Web-based software systems is constructed and trained. The experimental results show that the model can effectively predict the remaining useful life of Web-based software systems in real time with higher accuracy and stronger applicability. This method provides technical support for optimizing system’s rejuvenation decision.
文章编号:     中图分类号:    文献标志码:
基金项目:山西省应用基础研究项目(201901D111266);山西省哲学社会科学规划课题(2020YY161)
引用文本:
党伟超,李涛,白尚旺.基于LSTM网络的Web软件系统实时剩余寿命预测.计算机系统应用,2021,30(7):253-258
DANG Wei-Chao,LI Tao,BAI Shang-Wang.Real-Time Residual Life Prediction of Web-Based Software System Based on LSTM.COMPUTER SYSTEMS APPLICATIONS,2021,30(7):253-258