本文已被:浏览 752次 下载 1480次
Received:October 10, 2020 Revised:November 02, 2020
Received:October 10, 2020 Revised:November 02, 2020
中文摘要: 电梯安全监测系统应用中, 对于电梯乘客识别往往采用红外传感技术或是传统人脸检测算法如Haar-like、HOG实现, 但应用效果并非很理想. 近年来随着深度学习的发展, 基于卷积神经网络的人脸检测算法在精度上高于传统人脸检测算法, 被多个领域应用. 基于多任务级联卷积神经人脸检测算法模型小、运算快的特点而将其应用到电梯安全监测系统中的电梯乘客识别, 通过引入Inception模块思想, 利用不同大小卷积核并行操作增加各级网络的深度和宽度, 提升网络特征提取能力, 结合Batch Normalization算法提高模型训练速度和网络的分类能力. 实验结果表明, 改进后算法的精度比原算法提升了2%, 实现高准确率的电梯乘客识别.
中文关键词: 卷积神经网络 电梯安全监测 乘客识别 Inception模块 批量归一化
Abstract:In the application of safety monitoring system of elevators, infrared sensor technology or traditional face detection algorithms involving Haar-like and HOG features are often used for the recognition of elevator passengers with poor effect though. With the development of deep learning in recent years, the face detection algorithm based on convolutional neural networks is more accurate than traditional face detection algorithms and has been applied in many fields. Moreover, the face detection algorithm based on multi-task cascaded convolutional neural networks is adopted to recognize elevator passengers in the safety monitoring system owing to its small model and fast operation. With the inception module introduced, the depth and width of networks at all levels are raised by the parallel operation of convolutional cores of different sizes for better extraction of network features; models are trained faster and network classification is enhanced through batch normalization. The experimental results show that the accuracy of the improved algorithm is 2% higher than that of the original one and can thus realize the highly accurate recognition of elevator passengers.
keywords: Convolutional Neural Network (CNN) elevator safety monitoring passenger recognition inception module batch normalization
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金-海峡联合基金重点项目(U1805263); 福建省引导性项目(2019H0009, 2020H0011); 福建省自然科学基金(2019J01427)
引用文本:
王廷银,郭威,吴允平.多任务卷积神经网络的电梯乘客识别方法.计算机系统应用,2021,30(6):278-285
WANG Ting-Yin,GUO Wei,WU Yun-Ping.Elevator Passenger Identification Method Based on Multi-Task Convolutional Neural Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):278-285
王廷银,郭威,吴允平.多任务卷积神经网络的电梯乘客识别方法.计算机系统应用,2021,30(6):278-285
WANG Ting-Yin,GUO Wei,WU Yun-Ping.Elevator Passenger Identification Method Based on Multi-Task Convolutional Neural Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):278-285