本文已被:浏览 807次 下载 2023次
Received:October 10, 2020 Revised:November 02, 2020
Received:October 10, 2020 Revised:November 02, 2020
中文摘要: 鉴于在低温状态下锂电池实时容量可估计性难度高, 低温环境下瞬时电流电压对瞬态电池容量变化影响效果大. 对Dense全连接层为主体的深度前馈BP网络模型进行了研究, 进行了不同添加层对模型预测值与实际值的影响分析, 采用了[11-9-12]的3层隐藏层BP网络模型以达到较高的精度, 采用了基于SGD扩展的使用动量和自适应学习率来加快收敛速度Nadam优化算法以及Log-cosh损失函数优化模型, 并且采用正则化方法降低过拟合, 提高网络泛化能力. 基于HPPC工况下0度低温实验测试数据进行模型的训练以及测试, 经实验测试实现了在不同电压电流条件下所预测的soc误差在0.04左右.
Abstract:Considering the real-time capacity of lithium batteries at low temperatures is hard to be estimated, the instantaneous current and voltage largely influence the change in transient battery capacity at low temperatures . The deep feedforward BP network model with the Dense fully connected layer as the main body is studied, and the influence of different added layers on the predicted and actual values of the model is analyzed; the BP network with three hidden layers [11-9-12] is used for higher accuracy; Nadam optimization algorithm and the optimization model of Log-cosh loss function that accelerate convergence with the momentum method and the adaptive learning rate method based on SGD expansion are adopted. Overfitting are reduced by regularization for better network generalization. The model is trained and tested based on the data at 0 °C under the HPPC working condition. Consequently, the prediction error of soc at different voltages and currents is about 0.04.
keywords: BP neural network Adam Log-cosh Dense regularization
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
唐豪,张振东,吴兵.基于BP神经网络的HPPC低温SOC优化估计.计算机系统应用,2021,30(6):293-299
TANG Hao,ZHANG Zhen-Dong,WU Bing.Low Temperature Estimation of Battery SOC Based on BP Neural Network under HPPC Conditions.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):293-299
唐豪,张振东,吴兵.基于BP神经网络的HPPC低温SOC优化估计.计算机系统应用,2021,30(6):293-299
TANG Hao,ZHANG Zhen-Dong,WU Bing.Low Temperature Estimation of Battery SOC Based on BP Neural Network under HPPC Conditions.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):293-299