###
计算机系统应用英文版:2021,30(6):18-27
本文二维码信息
码上扫一扫!
图像增强算法综述
(河南大学 物理与电子学院, 开封 475001)
Review on Image Enhancement Algorithms
(School of Physics and Electronics, Henan University, Kaifeng 475001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2743次   下载 10342
Received:October 12, 2020    Revised:November 05, 2020
中文摘要: 图像增强算法主要是对成像设备采集的图像进行一系列的加工处理, 增强图像的整体效果或是局部细节, 从而提高整体与部分的对比度, 抑制不必要的细节信息, 改善图像的质量, 使其符合人眼的视觉特性. 首先, 本文从图像增强算法的基本原理出发, 归纳了直方图均衡图像增强、小波变换图像增强、偏微分方程图像增强、分数阶微分的图像增强、基于Retinex理论的图像增强和基于深度学习的图像增强算法, 并讨论了它们的改进算法. 然后, 从视觉效果、对比度、信息熵等方面对几种算法进行了定性和定量的对比, 分析了它们的优势和劣势. 最后, 对图像增强算法的未来发展趋势作了简单的展望.
Abstract:Image enhancement algorithm mainly process the captured images to enhance the overall effect or local details, increasing the overall and partial contrast while suppressing unwanted details. As a result, the quality of the images is improved, conforming to the visual perception of the human eye. Firstly, according to the basic principles of image enhancement algorithms, this study analyzes those based on histogram equalization, wavelet transform, partial differential equations, fractional-order differential equations, the Retinex theory and deep learning, and their improved algorithms. Then, the qualitative and quantitative comparisons between image enhancement algorithms are carried out with regard to visual effect, contrast, and information entropy to indentify the advantages and disadvantages of them. Finally, the future development trend of image enhancement algorithms is briefly predicted.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
靳阳阳,韩现伟,周书宁,张世超.图像增强算法综述.计算机系统应用,2021,30(6):18-27
JIN Yang-Yang,HAN Xian-Wei,ZHOU Shu-Ning,ZHANG Shi-Chao.Review on Image Enhancement Algorithms.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):18-27