###
计算机系统应用英文版:2021,30(6):127-133
本文二维码信息
码上扫一扫!
用于水下机器人导航的序列海底图像配准方法
(太原科技大学 计算机科学与技术学院, 太原 030024)
Sequential Submarine Image Registration Method for Underwater Vehicle Navigation
(School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 800次   下载 1572
Received:September 30, 2020    Revised:October 28, 2020
中文摘要: 为了增加深海海底图像匹配对应点的数量和正确率. 本文针对水下机器人导航的序列海底图像, 提出了基于图像信息和先验知识的带状对应点配准方法. 首先对深海海底图像进行适当的光照补偿和图像线性增强等预处理. 然后利用导航数据作为引导思想, 根据拍摄图像的物理位置偏移量, 计算邻接图像相似区域(即邻接图像带状区域). 以带状区域内计算特征对应点代替全局计算特征对应点. 增加图像配准点的个数, 降低误配率. 在具有重复纹理和低纹理的深海海底图像实验中证明, 较单独使用图像信息的配准, 该方法有效的增加了图像配准对应点的数量和正确率.
Abstract:In this study, regarding a sequence submarine image for underwater vehicle navigation, a ribbon matching method based on image information and prior knowledge is proposed to increase the number and accuracy of matching points of submarine images. First of all, the deep submarine image is pre-processed with proper light compensation and linear enhancement. Then with navigation data as a guide, adjacent image ribbon areas are calculated on the basis of the physical position offset of images. The global calculated feature points are replaced by the calculated features in the ribbon area to increase the number of image registration points and reduce the mismatching rate. In experiments on deep sea images with repeated and few textures, compared with registration rely solely on image information, this method improves the number and accuracy of corresponding points in image registration.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61373099)
引用文本:
梁雅欣,李晓明.用于水下机器人导航的序列海底图像配准方法.计算机系统应用,2021,30(6):127-133
LIANG Ya-Xin,LI Xiao-Ming.Sequential Submarine Image Registration Method for Underwater Vehicle Navigation.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):127-133