###
计算机系统应用英文版:2021,30(6):1-8
本文二维码信息
码上扫一扫!
基于机器学习的模糊测试种子输入优化
(1.中国科学技术大学, 合肥 230026;2.中国科学院 软件研究所 可信计算与信息保障实验室, 北京 100190)
Optimization of Fuzzing Seed Input Based on Machine Learning
(1.University of Science and Technology of China, Hefei 230026, China;2.Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1317次   下载 2150
Received:October 09, 2020    Revised:November 02, 2020
中文摘要: 模糊测试作为一种自动化检测应用程序漏洞的方法, 常常被用来检测各种软件以及计算机系统的漏洞挖掘中. 而种子文件质量的高低对于模糊测试的效果而言至关重要. 所以本文提出了一种基于机器学习的模糊测试种子输入的生成方法, 利用样本输入和基于机器学习的技术来学习样本输入的规则和语法. 并利用学到的规则和语法来生成全新的种子输入. 我们还提出了一个采样方法. 使得这些新的种子输入的覆盖率较之前有了明显提升.
Abstract:As a method of automatically detecting application vulnerabilities, fuzzing often serves for various software and computer systems. The quality of the seed file is very important to the fuzzing test. Therefore, this study proposes a method for generating fuzzing seed input based on machine learning. It relies on sample input and machine learning-based technology to learn the rules and grammar of sample input, which are then used to generate new seed input. We also propose a sampling method, considerably improving the coverage of the new seed input.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61471344, 61772506, 62072448); 国家重点研发计划(2017YFB0802902)
引用文本:
王敏,冯登国,程亮,张阳.基于机器学习的模糊测试种子输入优化.计算机系统应用,2021,30(6):1-8
WANG Min,FENG Deng-Guo,CHENG Liang,ZHANG Yang.Optimization of Fuzzing Seed Input Based on Machine Learning.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):1-8