本文已被:浏览 961次 下载 1919次
Received:August 16, 2020 Revised:September 10, 2020
Received:August 16, 2020 Revised:September 10, 2020
中文摘要: 二阶优化方法可以加速深度神经网络的训练, 但是二阶优化方法巨大的计算成本使其在实际中难以被应用. 因此, 近些年的研究提出了许多近似二阶优化方法的算法. K-FAC算法提供了一种近似自然梯度的有效方法. 在K-FAC算法的基础上, 结合拟牛顿方法的思想, 提出了一种改进的K-FAC算法. 在开始的少量迭代中利用K-FAC算法计算, 在后续迭代中构造秩–1矩阵, 通过Sherman-Morrison公式进行计算, 大大降低了计算复杂度. 实验结果表明, 改进的K-FAC算法比K-FAC算法有相似甚至是更好的实验表现. 特别的, 改进的K-FAC算法与K-FAC算法相比减少了大量的训练时间, 而且与一阶优化方法相比, 在训练时间上仍具有一定的优势.
Abstract:Second-order optimization can accelerate the training of deep neural networks, but its huge computational cost hinders it from applications. Therefore, many algorithms have been proposed to approximate second-order optimization in recent studies. The K-FAC algorithm can approximate natural gradient, based on which an improved K-FAC algorithm is proposed according to the quasi-Newton method. The K-FAC algorithm is applied to the first few iterations. Then, a rank-one matrix is built, and its inverse matrix is computed by the Sherman-Morrison formula, greatly reducing computational complexity. The experimental results prove that the improved K-FAC algorithm has similar or even better performance than the original K-FAC, especially with much less training time. It also has the advantage over first-order optimization in regard to training time.
keywords: deep learning second-order optimization methods K-FAC algorithm Sherman-Morrison formula Fisher information matrix
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(11871051)
引用文本:
刘小雷,高凯新,王勇.基于Sherman-Morrison公式的K-FAC算法.计算机系统应用,2021,30(4):118-124
LIU Xiao-Lei,GAO Kai-Xin,WANG Yong.K-FAC Algorithm Based on Sherman-Morrison Formula.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):118-124
刘小雷,高凯新,王勇.基于Sherman-Morrison公式的K-FAC算法.计算机系统应用,2021,30(4):118-124
LIU Xiao-Lei,GAO Kai-Xin,WANG Yong.K-FAC Algorithm Based on Sherman-Morrison Formula.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):118-124