###
计算机系统应用英文版:2021,30(4):199-203
本文二维码信息
码上扫一扫!
学生行为相关性分析及改进GA-BP学业预警算法
(烟台汽车工程职业学院 信息与控制工程系, 烟台 265500)
Correlation Analysis of Student Behavior and Improvement of GA-BP Academic Early Warning Algorithm
(Department of Information and Control Engineering, Yantai Automobile Engineering Professional College, Yantai 265500, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 931次   下载 2240
Received:August 14, 2020    Revised:September 10, 2020
中文摘要: 针对教育大数据背景下高校学生管理面临的问题, 提出了一种高校学生学业预警算法, 利用现有高校数字校园建设成果, 挖掘潜在的教育数据. 采用Kendall相关性分析方法选择用于预测的特征数据, 选择相关系数较高的8个特征数据作为BP神经网络的输入, 采用相关性分析结果改进GA-BP算法, 综合考虑各项因素实现学业情况的预测. 经试验, 该学业预警算法的预测准确率可以达到90%以上.
中文关键词: 相关性分析  GA-BP  学业预警  教育数据
Abstract:Aiming at the problems faced by college student management in the context of educational big data, this study proposes an academic early warning algorithm for college students. It mines potential education data with the results of digital campus construction in colleges and universities. Eight characteristic data with higher correlation coefficients selected by the Kendall correlation analysis are taken as the input for the BP neural network, and the relevant results are applied to improving the GA-BP algorithm. Thus, the academic situation is predicted by taking into account various factors. The tests demonstrate that the prediction accuracy of the proposed algorithm can reach more than 90%.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
姜绍萍.学生行为相关性分析及改进GA-BP学业预警算法.计算机系统应用,2021,30(4):199-203
JIANG Shao-Ping.Correlation Analysis of Student Behavior and Improvement of GA-BP Academic Early Warning Algorithm.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):199-203