###
计算机系统应用英文版:2019,28(9):88-94
本文二维码信息
码上扫一扫!
基于BWDSP众核的CNN计算任务划分优化
(中国科学技术大学 计算机科学与技术学院, 合肥 230027)
Optimization of CNN Computing Task Partition Based on Many-Core BWDSP
(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1753次   下载 2075
Received:February 28, 2019    Revised:March 14, 2019
中文摘要: 作为深度学习算法之一的卷积神经网络在多个领域有着重要的应用.因为其网络模型的规模和结构比较复杂,数据量较大,故需要考虑降低其对计算资源的要求.一般地,对于大数据量的计算任务,需要使用数据并行的方法进行任务的划分计算,而仅使用数据并行而对计算的任务的特点不加以结合,其数据传输量较高.因此需要通过对CNN网络结构及其计算特性的分析,设计合理的计算任务划分策略,减少数据的传输量.本文首先介绍了深度学习加速器中对计算任务的优化处理,接着介绍BWDSP的众核深度学习加速器的体系架构,并设计计算划分策略,基于VGGNet-16网络模型进行实验对比分析.实验结果表明该优化算法可以显著的提高数据传输的性能,降低数据的传输量.
Abstract:Convolutional Neural Network (CNN), which is one of the deep learning algorithms, has been applied in many fields. Because the scale and structure of the network model are complex and the model has large amount of data, it is necessary to reduce the requirements for computational resource. Generally, it needs to use data parallel strategy to partition and calculate tasks with large amount of data. However, just using data parallel strategy which does not combine with the characteristics of computing tasks, it would result in high volume data transmission. Because of that, it is essential to design a reasonable data partitioning strategy for reducing the amount of data transmission through the analysis of the network structure and the computing characteristics of CNN. Firstly, this paper introduces the optimization of computing tasks in deep learning accelerator. Then, it introduces the architecture of the deep learning accelerator based on many-core BWDSP and designs the strategy of computing partition. And it compares and analyzes the experimental results based on VGGNet-16. The experimental results show that the proposed optimization algorithm can significantly improve the performance of data transmission and reduce the amount of data transmission.
文章编号:     中图分类号:    文献标志码:
基金项目:国家核高基重大专项(2012ZX01034-001-001)
引用文本:
王改,郑启龙,邓文齐,杨江平,卢茂辉.基于BWDSP众核的CNN计算任务划分优化.计算机系统应用,2019,28(9):88-94
WANG Gai,ZHENG Qi-Long,DENG Wen-Qi,YANG Jiang-Ping,LU Mao-Hui.Optimization of CNN Computing Task Partition Based on Many-Core BWDSP.COMPUTER SYSTEMS APPLICATIONS,2019,28(9):88-94