本文已被:浏览 1928次 下载 2922次
Received:February 28, 2019 Revised:March 22, 2019
Received:February 28, 2019 Revised:March 22, 2019
中文摘要: 近几十年来,人们生活水平显著提高,但是健康意识依旧薄弱,不良的生活习惯和饮食习惯导致糖尿病发病人数急剧增加,由糖尿病导致的各种并发症严重威胁了人们的健康.由于糖尿病具有知晓率低的特点,很多糖尿病患者未能及时发现病症,导致出现并发症.本文通过分析糖尿病的特点,针对医疗数据样本量小、容易缺失的特点,选择IV值分析进行特征选择、使用一种新型的Boosting算法CatBoost进行糖尿病患者预测,取得了显著的预测效果.
Abstract:In recent decades, people’s living standards have improved significantly, but health awareness is still weak. Poor living habits and eating habits have led to a sharp increase in the number of people with diabetes. The complications caused by diabetes are a serious threat to people’s health. Because awareness rate of diabetes is low, many patients with diabetes fail to detect the disease in time, leading to complications. In this study, by analyzing the characteristics of diabetes, according to the characteristics of small sample size and easy to be missing, the IV value analysis is used for feature selection, and CatBoost, a new type of Boosting algorithm, is used to predict diabetes patients and achieves significant predictive effects.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
苗丰顺,李岩,高岑,王美吉,李冬梅.基于CatBoost算法的糖尿病预测方法.计算机系统应用,2019,28(9):215-218
MIAO Feng-Shun,LI Yan,GAO Cen,WANG Mei-Ji,Li Dong-Mei.Diabetes Prediction Method Based on CatBoost Algorithm.COMPUTER SYSTEMS APPLICATIONS,2019,28(9):215-218
苗丰顺,李岩,高岑,王美吉,李冬梅.基于CatBoost算法的糖尿病预测方法.计算机系统应用,2019,28(9):215-218
MIAO Feng-Shun,LI Yan,GAO Cen,WANG Mei-Ji,Li Dong-Mei.Diabetes Prediction Method Based on CatBoost Algorithm.COMPUTER SYSTEMS APPLICATIONS,2019,28(9):215-218