###
计算机系统应用英文版:2018,27(11):252-258
本文二维码信息
码上扫一扫!
基于PCA-LSTM的多变量矿山排土场滑坡预警研究
(1.北京化工大学 信息科学与技术学院, 北京 100029;2.北京石油化工学院 信息工程学院, 北京 102617)
Early Warning of Landslide in Mined Mine Dumping Site Based on PCA-LSTM
(1.School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;2.School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2212次   下载 2268
Received:April 11, 2018    Revised:April 28, 2018
中文摘要: 针对矿山排土场滑坡的过程是一个动态、大延迟、情况复杂的特性问题,影响矿山排土场滑坡的因素众多,各个特性指标间相互影响,而关于排土场滑坡预警并没有严格的划分标准,本文提出主成分关联长短期记忆(PCA-LSTM)网络模型,利用主成分分析和关联性分析,挖掘出所有特性指标当中的第一主成分,与第一主成分关联性较强的其它特性指标,将得到的其它特性指标和第一主成分作为预测排土场滑坡的主要特性指标,利用长短期记忆网络(LSTM)在处理时间序列问题能够将现有输入的信息与历史信息相互结合的特点;采用LSTM网络模型通过多个其它特性指标对第一主成分地表位移指标进行预测,并取得了较好的效果.
中文关键词: 关联性  主成分分析  LSTM  地表位移  预测  特性指标
Abstract:The process of landslides for mine dumps is a dynamic, large-delay, and complex situational problem. There are many factors that affect the landslide in mine dumps, and each characteristic index influences each other. However, there is no strict categorizing standard for index of landslide warning for dumping sites. This study proposes Principal Component Analysis Long-Term and Short-Term Memory network (PCA-LSTM) model, using PCA and correlation analysis, mining the first principal component among all the characteristic indicators, and the other indicators with strong correlation with the first principal component. The obtained other characteristic indexes and the first principal component are used as the main characteristic indicators to predict the dumping landslide, and the LSTM is used to combine the existing input information and the historical information when dealing with time series problems. The LSTM model predicts the displacement of the first principal component through a number of other characteristic indicators and has obtained sound results.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
曹国清,张晓明,陈亚峰.基于PCA-LSTM的多变量矿山排土场滑坡预警研究.计算机系统应用,2018,27(11):252-258
CAO Guo-Qing,ZHANG Xiao-Ming,CHEN Ya-Feng.Early Warning of Landslide in Mined Mine Dumping Site Based on PCA-LSTM.COMPUTER SYSTEMS APPLICATIONS,2018,27(11):252-258