###
计算机系统应用英文版:2018,27(11):35-41
本文二维码信息
码上扫一扫!
结合密集神经网络与长短时记忆模型的中文识别
(1.中国科学技术大学 计算机科学与技术学院, 合肥 230022;2.辽宁省实验中学, 沈阳 110031)
Chinese Recognition Based on Dense Convolutional Network and Bidirectional Long Short-Term Memory Model
(1.School of Computer Science and Technology, University of Science and Technology of China, Hefei 230022, China;2.Liaoning Provincial Shiyan High School, Shenyang 110031, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2067次   下载 2556
Received:April 11, 2018    Revised:May 11, 2018
中文摘要: 文本图像识别是计算机视觉领域一项重要任务,而其中的中文识别因种类繁多、结构复杂以及类间相近等特点很具挑战性.为改善这一问题,使用文本行端到端的识别模型.首次提出利用密集卷积神经网络(DenseNet)提取文本图像底层特征,同时避免手工设计、统计图像特征的繁琐;将整行图像特征直接送入双向长短时记忆模型(BLSTM)进行局部相关性分析,减少字符定位分割这一步骤;最后采用时域连接模型(CTC)解码获得识别的文本信息.实验表明所提出的模型可以高效的进行图像文本行的识别,并对图像的多种形变具有较好的鲁棒性.
Abstract:Text recognition is an important task in computer vision. The recognition of Chinese texts is challenging because of its wide range, complicated structure, and similar classes. In order to improve this problem, an end-to-end recognition model of text is used. The proposed model uses Dense convolutional Network (DenseNet) to extract features of text images, avoiding artificial design and statistics features. Then, the features are sent to Bidirectional Long Short-Term Memory model (BLSTM) for correlation analysis of local data. This step avoids the character segmentation. Finally, the Connectionist Temporal Classifier (CTC) is used to decode the text information. Experiments show that the proposed model can effectively recognize text images, and has strong robustness to various deformed images.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
张艺玮,赵一嘉,王馨悦,董兰芳.结合密集神经网络与长短时记忆模型的中文识别.计算机系统应用,2018,27(11):35-41
ZHANG Yi-Wei,ZHAO Yi-Jia,WANG Xin-Yue,DONG Lan-Fang.Chinese Recognition Based on Dense Convolutional Network and Bidirectional Long Short-Term Memory Model.COMPUTER SYSTEMS APPLICATIONS,2018,27(11):35-41