###
计算机系统应用英文版:2018,27(4):184-189
本文二维码信息
码上扫一扫!
基于改进的卡尔曼滤波算法的气象数据融合
(内蒙古农业大学 计算机与信息工程学院, 呼和浩特 010018)
Meteorological Data Fusion Based on Proposed Kalman Filter Method
(College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2188次   下载 4138
Received:August 05, 2017    Revised:August 22, 2017
中文摘要: 数据融合技术能够有效的提高计算效率,减少冗余数据.研究锡林河流域的空气温度数据的规律,针对传统的卡尔曼滤波的融合结果存在微小的波动,引入分布图法,提出了基于改进的卡尔曼滤波的空气温度数据融合算法,目的将每隔五秒采集空气温度数据融合为一小时的空气温度值.为了验证改进算法的性能,在原始数据的基础上分别设置了扰动数据和突变数据.通过实验仿真,改进的算法的融合效果好,抗干扰性和稳定性强,提高了气象数据的准确性.
Abstract:Data fusion is a method to improve the calculation efficiency and reduce redundant data. The air temperature data of Xinlinhe basin is carefully researched. Aiming at the drawback of traditional Kalman filter approach:a slight fluctuation, a novel method is proposed based on the traditional Kalman filter and distribution map to fuse the air temperature data. The task is to make the data collected every five seconds fuse into the air temperature value of an hour. For the demonstration the proposed method, disturbance data and mutation data are set on the basis of the original data. Via the experimental simulation, the improved algorithm has a good fusion effect, with strong anti-interference and stability, which can raise the accuracy of the meteorological data.
文章编号:     中图分类号:    文献标志码:
基金项目:国家国际科技合作专项项目子项目(2015DFA00530)
引用文本:
周艳青,薛河儒,姜新华,王思宇,王静.基于改进的卡尔曼滤波算法的气象数据融合.计算机系统应用,2018,27(4):184-189
ZHOU Yan-Qing,XUE He-Ru,JIANG Xin-Hua,WANG Si-Yu,WANG Jing.Meteorological Data Fusion Based on Proposed Kalman Filter Method.COMPUTER SYSTEMS APPLICATIONS,2018,27(4):184-189