###
计算机系统应用英文版:2024,33(10):13-25
本文二维码信息
码上扫一扫!
基于稀疏分位数回归的阿尔茨海默病认知能力研究
(1.中国科学技术大学 管理学院, 合肥 230026;2.汕头大学 医学院, 汕头 515041)
Cognitive Abilities Research in Alzheimer’s Disease Based on Sparse Quantile Regression
(1.School of Management, University of Science and Technology of China, Hefei 230026, China;2.Medical College, Shantou University, Shantou 515041, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 226次   下载 1129
Received:March 28, 2024    Revised:May 06, 2024
中文摘要: 阿尔茨海默病是全球老龄化社会所面临的一项重大公共卫生挑战, 其主要临床症状之一为认知能力的逐步下降. 建立认知表现和神经影像学数据之间的模型, 识别与认知能力改变相关的影像学生物标志物, 已成为阿尔茨海默病研究的重要课题之一. 然而, 脑部影像数据往往呈现高维、重尾分布并伴有异常值存在, 这不仅降低了模型的准确性和稳定性, 也对结果的解释提出挑战. 本文采用稀疏分位数回归方法对阿尔茨海默病神经影像学计划数据库(ADNI)中的数据进行建模和特征选择, 以克服上述问题. 我们深入探究了认知得分在不同分位点下的分布特征, 并成功地识别了与认知能力相关的特定脑区. 实验结果表明, 稀疏分位数回归方法在不同认知得分分位点下, 均能准确识别出与认知能力相关的脑区. 这一研究展示了将稀疏分位数回归方法应用于神经影像数据分析中的潜力, 为神经影像学研究提供了全新的视角和方法.
Abstract:Alzheimer’s disease poses a significant public health challenge in the global aging society. One of its main clinical symptoms is the gradual decline in cognitive abilities. A crucial topic in Alzheimer’s disease research is to establish models that link cognitive performance with neuroimaging data to identify neuroimaging biomarkers associated with cognitive abilities. However, neuroimaging data often exhibit high dimensions, heavy-tailed distributions, and outliers. These characteristics not only reduce the accuracy and stability of models but also pose challenges for result explanations. To address these issues, this study uses sparse quantile regression to model and perform feature selection on data from the Alzheimer’s disease neuroimaging initiative (ADNI). This study also explores the distribution characteristics of cognitive scores at different quantiles and identifies specific brain regions associated with cognitive abilities. Experimental results demonstrate that sparse quantile regression successfully identifies the brain regions relevant to cognitive abilities at different quantiles. This research shows the potential of applying sparse quantile regression in neuroimaging data analysis and provides a novel perspective and approach for neuroimaging research.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金面上项目(12171449); 中国科学技术大学重要方向项目培育基金(WK3470000027)
引用文本:
温灿红,张雨,谭海珠.基于稀疏分位数回归的阿尔茨海默病认知能力研究.计算机系统应用,2024,33(10):13-25
WEN Can-Hong,ZHANG Yu,TAN Hai-Zhu.Cognitive Abilities Research in Alzheimer’s Disease Based on Sparse Quantile Regression.COMPUTER SYSTEMS APPLICATIONS,2024,33(10):13-25