本文已被:浏览 295次 下载 1239次
Received:February 04, 2024 Revised:February 23, 2024
Received:February 04, 2024 Revised:February 23, 2024
中文摘要: 比例积分微分(PID)控制在工业控制和机器人控制领域应用非常广泛. 然而, 其在实际应用中存在参数整定复杂、系统无法精准建模以及对被控对象变化敏感的问题. 为了解决这些问题, 本文提出了一种基于深度强化学习算法的分层自适应PID控制算法, 即TD3-PID, 用于移动机器人的自动控制. 其中, 上层控制器通过实时观测当前环境状态和系统状态实现对下层PID控制器参数和输出补偿量进行调整, 以实时补偿误差从而优化系统性能. 本文将所提出的TD3-PID控制器应用于4轮移动机器人轨迹跟踪任务并和其他控制方法进行了真实场景实验对比. 结果显示 TD3-PID控制器表现出更优越的动态响应性能和抗干扰能力, 整体响应误差显著减小, 在提高控制系统性能方面具有显著的优势.
Abstract:Proportional integral derivative (PID) control is widely used in the fields of industrial and robot control. However, it faces challenges such as complex parameter setting, difficulty in accurately modeling the system, and sensitivity to changes in the controlled object. To address these challenges, this study proposes a hierarchical adaptive PID control algorithm based on a deep reinforcement learning algorithm, named TD3-PID, for the automatic control of mobile robots. In this algorithm, the upper-layer controller adjusts the parameters and output compensation of the lower-layer PID controller by observing the current environmental and system status in real time to compensate for errors in real time and optimize system performance. This study applies the proposed TD3-PID controller to a trajectory tracking task of a four-wheel mobile robot and conducts real-scenario experimental comparisons with other control methods. The results show that the TD3-PID controller exhibits superior dynamic response performance and anti-interference ability. The overall response error is significantly reduced and significant advantages are seen in improving the performance of the control system.
keywords: deep reinforcement learning (DRL) proportional integral derivative (PID) algorithm adaptive control deterministic strategy gradient algorithm trajectory tracking
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
余文浩,齐立哲,梁瀚文,孙云权.基于深度强化学习的分层自适应PID控制算法.计算机系统应用,2024,33(9):245-252
YU Wen-Hao,QI Li-Zhe,LIANG Han-Wen,SUN Yun-Quan.Hierarchical Adaptive PID Control Algorithm Based on Deep Reinforcement Learning.COMPUTER SYSTEMS APPLICATIONS,2024,33(9):245-252
余文浩,齐立哲,梁瀚文,孙云权.基于深度强化学习的分层自适应PID控制算法.计算机系统应用,2024,33(9):245-252
YU Wen-Hao,QI Li-Zhe,LIANG Han-Wen,SUN Yun-Quan.Hierarchical Adaptive PID Control Algorithm Based on Deep Reinforcement Learning.COMPUTER SYSTEMS APPLICATIONS,2024,33(9):245-252