本文已被:浏览 238次 下载 1046次
Received:February 07, 2024 Revised:March 28, 2024
Received:February 07, 2024 Revised:March 28, 2024
中文摘要: 遥感影像语义分割在环境监测、土地覆盖分类和城市规划等领域发挥着至关重要的作用. 卷积神经网络及其改进模型是遥感影像语义分割的主流方法, 但此类方法更加关注局部上下文特征的学习, 无法有效建模不同物体之间的全局分布关系, 进而制约了模型的分割性能. 为了解决该问题, 本文在卷积神经网络的基础上, 构建了全局语义关系学习模块, 充分学习不同物体之间的共生关系, 有效地增强了模型的表征能力. 此外, 考虑到同一场景中, 待分割物体的尺度存在差异性, 构建了多尺度关系学习模块, 以融合不同尺度的全局语义关系. 为了评估模型的性能, 本文在Vaihingen和Potsdam两个常用的遥感影像数据集上进行了充分的实验. 实验结果表明, 本文方法能够获得比已有的基于卷积神经网络的模型更高的分割性能.
Abstract:Semantic segmentation of remote sensing images plays a crucial role in environmental detection, land cover classification, and urban planning. Convolutional neural networks and their improved models are the mainstream methods for semantic segmentation of remote sensing images. However, these methods focus more on learning local contextual features and cannot effectively model the global distribution relationship between different objects, thereby restricting the segmentation performance of the model. To address this issue, this study constructs a global semantic relationship learning module based on convolutional neural networks, which fully learns the symbiotic relationships between different objects and effectively enhances the model’s representation ability. In addition, a multi-scale relationship learning module is constructed to integrate global semantic relationships of different scales, given the scale differences of the objects to be segmented in the same scene. To evaluate the performance of the model, sufficient experiments are conducted on two commonly used remote sensing image datasets, Vaihingen and Potsdam. The experimental results show that the proposed method can achieve higher segmentation performance than existing models based on convolutional neural networks.
keywords: remote sensing image semantic segmentation global semantic relationship multi-scale fusion
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(U21B2049, 61906096)
引用文本:
孙梓翔,钱旭威,杨平,杭仁龙.基于语义引导与多尺度增强的遥感影像分割网络.计算机系统应用,2024,33(8):51-59
SUN Zi-Xiang,QIAN Xu-Wei,YANG Ping,HANG Ren-Long.Remote Sensing Image Segmentation Network Based on Semantic Guide and Multi-scale Enhancement.COMPUTER SYSTEMS APPLICATIONS,2024,33(8):51-59
孙梓翔,钱旭威,杨平,杭仁龙.基于语义引导与多尺度增强的遥感影像分割网络.计算机系统应用,2024,33(8):51-59
SUN Zi-Xiang,QIAN Xu-Wei,YANG Ping,HANG Ren-Long.Remote Sensing Image Segmentation Network Based on Semantic Guide and Multi-scale Enhancement.COMPUTER SYSTEMS APPLICATIONS,2024,33(8):51-59