###
计算机系统应用英文版:2024,33(7):201-212
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于F范数群组效应和谱聚类的无监督特征选择
(1.辽宁工程技术大学 软件学院, 葫芦岛 125105;2.辽宁工程技术大学 基础教学部, 葫芦岛 125105)
Unsupervised Feature Selection Based on F-norm Group Effect and Spectral Clustering
(1.Software College, Liaoning Technical University, Huludao 125105, China;2.Department of Basic Teaching, Liaoning Technical University, Huludao 125105, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 207次   下载 588
Received:January 24, 2024    Revised:February 26, 2024
中文摘要: 基于谱聚类的无监督特征选择主要涉及相关系数矩阵和聚类指示矩阵, 在以往的研究中, 学者们主要关注于相关系数矩阵, 并为此设计了一系列约束和改进, 但仅关注相关系数矩阵并不能充分学习到数据内在结构. 考虑群组效应, 本文向聚类指示矩阵施加$F$范数, 并结合谱聚类以使相关系数矩阵学习更为准确的聚类指示信息, 通过交替迭代法求解两个矩阵. 不同类型的真实数据集实验表明文中方法的有效性, 此外, 实验表明$F$范数还可以使方法更加鲁棒.
Abstract:Unsupervised feature selection based on spectral clustering mainly involves the correlation coefficient matrix and the clustering indicator matrix. In previous studies, scholars have mainly focused on the correlation coefficient matrix, designing a series of constraints and improvements for it. However, focusing solely on the correlation coefficient matrix cannot fully learn the intrinsic structure of data. Considering the group effect, this study imposes the F-norm on the clustering indicator matrix and combines it with spectral clustering to make the correlation coefficient matrix learn more accurate clustering indicator information. The two matrices are solved through an alternating iteration method. Experiments on different types of real datasets show the effectiveness of the proposed method. In addition, experiments show that the F-norm can also make the method more robust.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
林清水,田鹏飞,张旺.基于F范数群组效应和谱聚类的无监督特征选择.计算机系统应用,2024,33(7):201-212
LIN Qing-Shui,TIAN Peng-Fei,ZHANG Wang.Unsupervised Feature Selection Based on F-norm Group Effect and Spectral Clustering.COMPUTER SYSTEMS APPLICATIONS,2024,33(7):201-212