###
计算机系统应用英文版:2024,33(3):273-280
本文二维码信息
码上扫一扫!
基于S-Transformer的多模态船舶轨迹预测
(1.武汉科技大学 计算机科学与技术学院, 武汉 430081;2.湖北省智能信息处理与实时工业系统重点实验室, 武汉 430081)
Multimodal Ship Trajectory Prediction Based on S-Transformer
(1.School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China;2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430081, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 454次   下载 1985
Received:September 25, 2023    Revised:October 25, 2023
中文摘要: 船舶轨迹预测是实现船舶智能航行的前提与基础. 目前, 针对船舶轨迹预测的研究大多仅依赖于船舶自动识别系统(AIS)历史数据, 而未利用到船舶上其他传感器信息. 于是本文提出了一种多模态轨迹预测模型——S-Transformer. 在该网络中, 电子海图中的海水/陆地被分割作为辅助训练目标与真实舟山港AIS数据加以综合从而对模型进行训练, 并对船舶未来航行轨迹进行预测; 其中, 本文还引入segment recurrence来捕获AIS数据的长期依赖关系. 实验结果表明, S-Transformer在不同的船舶行驶情况中都有优秀的预测结果, 并优于相关预测任务的单模态基准模型.
中文关键词: 轨迹预测  多模态  Transformer  语义分割
Abstract:Ship trajectory prediction is the premise and basis of realizing intelligent ship navigation. At present, most studies on ship trajectory prediction only rely on historical data of the automatic identification system (AIS), without using other sensor information on the ship. This study proposes a multi-modal trajectory prediction model S-Transformer. In this network, the seawater/land in the electronic chart is segmented as an auxiliary training target and integrated with the real Zhoushan port AIS data to train the model. In addition, the future ship sailing trajectory is predicted. The study also introduces Segment Recurrence to capture long-term dependencies of AIS data. The experimental results show that the S-Transformer has excellent prediction results in different ship-traveling situations and outperforms the unimodal benchmark model for related prediction tasks.
文章编号:     中图分类号:    文献标志码:
基金项目:装备发展部“慧眼行动”项目(62602010214)
引用文本:
柯研,陈姚节.基于S-Transformer的多模态船舶轨迹预测.计算机系统应用,2024,33(3):273-280
KE Yan,CHEN Yao-Jie.Multimodal Ship Trajectory Prediction Based on S-Transformer.COMPUTER SYSTEMS APPLICATIONS,2024,33(3):273-280