本文已被:浏览 504次 下载 1821次
Received:September 20, 2023 Revised:October 25, 2023
Received:September 20, 2023 Revised:October 25, 2023
中文摘要: 各领域虚假新闻的传播对社会造成了严重的影响, 不同领域间新闻的领域偏移问题和跨域关联问题也对模型的预测能力造成了极大的挑战. 针对上述问题, 本文提出了一种基于交叉特征感知融合的多领域虚假新闻检测方法. 该方法可以捕捉不同领域间新闻的多种特征差异, 并挖掘新闻之间的关联关系, 从多个维度控制模型在不同领域的特征融合策略. 此外, 本文还提出了一种联合训练框架. 本方法的模型使用本框架进行训练, 在中英文数据集上的预测F1分数分别达到了92.84%和85.49%, 相较于最先进的模型, 预测效果分别提升了1.16%和1.07%.
Abstract:The dissemination of false news in various domains has a serious impact on society. The problem of domain shift and cross-domain correlation of news between different domains also poses a great challenge to the prediction ability of the model. To address the above problems, this study proposes a multi-domain fake news detection method based on cross-feature perception fusion. This method can capture multiple feature differences in news between different domains, mine the correlations between news, and control the feature fusion strategy of the model in different domains from multiple dimensions. In addition, this study proposes a joint training framework that is adopted to train the proposed model. The model achieves a predictive F1 score of 92.84% and 85.49% on the English and Chinese datasets, respectively. Compared to the state-of-the-art model, the prediction results of the proposed model are improved by 1.16% and 1.07%, respectively.
keywords: domain shift cross-domain correlation cross-feature perception fusion multi-domain fake news detection joint training framework
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(62072469)
引用文本:
王振琦,陈涛,张宝宇,张明利,孙晨瑜,张卫山.基于交叉特征感知融合的多领域虚假新闻检测.计算机系统应用,2024,33(3):264-272
WANG Zhen-Qi,CHEN Tao,ZHANG Bao-Yu,ZHANG Ming-Li,SUN Chen-Yu,ZHANG Wei-Shan.Multi-domain Fake News Detection Based on Cross-feature Perception Fusion.COMPUTER SYSTEMS APPLICATIONS,2024,33(3):264-272
王振琦,陈涛,张宝宇,张明利,孙晨瑜,张卫山.基于交叉特征感知融合的多领域虚假新闻检测.计算机系统应用,2024,33(3):264-272
WANG Zhen-Qi,CHEN Tao,ZHANG Bao-Yu,ZHANG Ming-Li,SUN Chen-Yu,ZHANG Wei-Shan.Multi-domain Fake News Detection Based on Cross-feature Perception Fusion.COMPUTER SYSTEMS APPLICATIONS,2024,33(3):264-272