###
计算机系统应用英文版:2024,33(3):213-219
本文二维码信息
码上扫一扫!
基于BSCWEformer的退火炉内分组式辊速序列预测
(1.辽宁石油化工大学 信息与控制工程学院, 抚顺 113001;2.辽宁石油化工大学 人工智能与软件学院, 抚顺 113001)
Predicting Grouped Rollers Speed Series in Annealing Furnace Based on BSCWEformer
(1.School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China;2.School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 267次   下载 834
Received:September 24, 2023    Revised:October 20, 2023
中文摘要: 退火炉内带钢的长度受到温度、张力等因素的影响而变化, 导致辊的转速改变以及焊缝位置的不确定, 从而威胁生产安全. 为了准确预测辊的转速以计算焊缝的实时位置, 本文提出基于带状稀疏柯西自注意力的BSCWEformer (banded sparse Cauchy weight enhanced Transformer)模型. 模型采用带状稀疏的、使用基于相对位置计算的柯西分布权重值增强的自注意力结构, 在提高相邻输入序列的重要性的同时, 将自注意力的复杂度由二次方降低为线性. 通过实际生产数据进行实验, 并与LogSparse Transformer、Transformer、RNMT+等模型进行对比, 得出本文所提出的BSCWEformer模型在退火炉内分组式辊速序列预测任务上具有较高的预测精度.
Abstract:The length of the strip steel in the annealing furnace is affected by temperature, tension, and other factors, resulting in changes in roller speed and uncertainty in weld position and threatening production safety. To accurately predict roller speed, this study proposes the banded sparse Cauchy weight enhanced Transformer (BSCWEformer) model. The model adopts a banded sparse self-attention structure enhanced by Cauchy distribution weight values calculated from relative positions, which improves the importance of adjacent input sequences and reduces the complexity of self-attention from quadratic to linear. Through experiments with actual production data and comparison with LogSparse Transformer, Transformer, RNMT+, and other models, the BSCWEformer model shows higher accuracy in predicting grouped roller speed series.
文章编号:     中图分类号:    文献标志码:
基金项目:辽宁省教育厅科研项目(LJKMZ20220737)
引用文本:
岳晓光,石元博.基于BSCWEformer的退火炉内分组式辊速序列预测.计算机系统应用,2024,33(3):213-219
YUE Xiao-Guang,SHI Yuan-Bo.Predicting Grouped Rollers Speed Series in Annealing Furnace Based on BSCWEformer.COMPUTER SYSTEMS APPLICATIONS,2024,33(3):213-219