###
计算机系统应用英文版:2024,33(3):24-33
本文二维码信息
码上扫一扫!
基于图偏差网络的外部自编码器时间序列异常检测
(南京邮电大学 计算机学院、软件学院、网络空间安全学院, 南京 210023)
Time Series Anomaly Detection With External Autoencoder Based on Graph Deviation Network
(School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 540次   下载 1195
Received:September 02, 2023    Revised:October 08, 2023
中文摘要: 随着互联网和连接技术的提高, 传感器产生的数据逐渐趋于复杂化. 深度学习方法在处理高维数据的异常检测方面取得较好的进展, 图偏差网络(graph deviation network, GDN)学习传感器节点之间关系来预测异常, 并取得一定的效果. 针对图偏差网络模型缺少对时间依赖性以及异常数据不稳定的处理, 提出了基于图偏差网络的外部自编码器模型(graph deviation network-based external attention autoencoder, AEEA-GDN)深度提取表征, 此外在模型训练时引入自适应学习机制, 帮助网络更好地适应异常数据的变化. 在3个现实收集传感器数据集上的实验结果表明, 基于图偏差网络的外部自编码器模型比基线方法更准确地检测异常, 且总体性能更优.
Abstract:With the improvement of the Internet and connection technology, the data generated by sensors is gradually becoming complex. Deep learning methods have made great progress in anomaly detection of high-dimensional data. The graph deviation network (GDN) learns the relationship between sensor nodes to predict anomalies and has achieved certain results. Since the GDN model fails to deal with time dependence and instability of abnormal data, an external attention autoencoder based on GDN (AEEA-GDN) is proposed to deeply extract features. In addition, an adaptive learning mechanism is introduced during model training to help the network better adapt to changes in abnormal data. Experimental results on three real-world collected sensor datasets show that the AEEA-GDN model can more accurately detect anomalies than baseline methods and has better overall performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61972210)
引用文本:
张孚容,顾磊.基于图偏差网络的外部自编码器时间序列异常检测.计算机系统应用,2024,33(3):24-33
ZHANG Fu-Rong,GU Lei.Time Series Anomaly Detection With External Autoencoder Based on Graph Deviation Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(3):24-33