###
计算机系统应用英文版:2024,33(3):158-169
本文二维码信息
码上扫一扫!
融合强化学习的多目标路径规划
(武汉科技大学 信息科学与工程学院, 武汉430081)
Multi-objective Path Planning Based on Reinforcement Learning
(School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 646次   下载 1782
Received:September 07, 2023    Revised:October 09, 2023
中文摘要: 移动机器人路径规划问题的节点数量大、搜索空间广, 且对安全性和实时性有要求等因素, 针对移动机器人多目标路径规划问题, 提出一种新颖的融合强化学习的多目标智能优化算法. 首先, 该算法采用NSGA-II为基础框架, 利用强化学习的赋予个体学习能力, 设计一种SARSA算子提高算法的全局搜索效率. 其次, 为了加速算法的收敛速度和保证种群多样性, 增加自适应模拟二进制交叉算子(tanh-SBX)作为辅助算子, 并将种群分为两种性质不同的子种群: 精英种群和非精英种群. 最后, 设计了4种不同的策略, 通过模拟退火算法的Metropolis准则计算更新策略的概率, 让最合适的策略引导种群的优化方向, 以平衡探索和利用. 仿真实验表明, 该算法在不同复杂度的环境下均能找到最佳路径. 相比传统智能仿生算法, 在更加复杂的环境中, 所提出的算法能有效平衡优化目标, 找到更优的安全路径.
Abstract:The path planning problem for mobile robots involves a large number of nodes and a wide search space. It also considers factors such as safety and real-time requirements. To address the multi-objective path planning problem for mobile robots, this study proposes a novel multi-objective intelligent optimization algorithm that combines reinforcement learning. Firstly, the algorithm adopts NSGA-II as the base framework and equips individuals with learning capabilities by reinforcement learning. A SARSA operator is designed to improve the global search efficiency of the algorithm. Secondly, to accelerate the convergence speed and ensure population diversity, the study introduces an adaptive simulated binary crossover operator (tanh-SBX) as an auxiliary operator and divides the population into two sub-populations with different properties: elite and non-elite populations. Finally, the study designs four different strategies and calculates the probability of updating strategies using the Metropolis criterion of the simulated annealing algorithm. It allows the most suitable strategy to guide the population’s optimization direction, balancing exploration and exploitation. Simulation experiments demonstrate that the proposed algorithm can find optimal paths in environments with different complexities. Compared to traditional intelligent biomimetic algorithms, the proposed algorithm effectively balances optimization objectives and discovers safer and better paths in more complex environments.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62173259)
引用文本:
周毅,刘俊.融合强化学习的多目标路径规划.计算机系统应用,2024,33(3):158-169
ZHOU Yi,LIU Jun.Multi-objective Path Planning Based on Reinforcement Learning.COMPUTER SYSTEMS APPLICATIONS,2024,33(3):158-169