###
计算机系统应用英文版:2024,33(2):253-264
本文二维码信息
码上扫一扫!
基于传统方法与深度学习方法的图片相似度算法比较
(武汉大学 国家网络安全学院, 武汉 430072)
Comparison of Image Similarity Algorithms Based on Traditional Methods and Deep Learning Methods
(School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 712次   下载 1845
Received:July 01, 2023    Revised:August 08, 2023
中文摘要: 图片相似度比对作为计算机视觉的一个研究方向, 具有广泛的应用前景, 例如人脸识别、行人重识别和目标跟踪等. 然而, 目前有关图片相似度算法的总结和归纳相对较少, 并且将其应用在实际工业生产中也存在挑战. 本文总结了传统图像处理算法和深度学习图像处理算法在图片相似度比对方面的原理与表现, 旨在选取最佳的算法用于药品图片相似度比对的场景中. 在传统图像处理算法中, ORB算法在测试集上表现最佳, 准确率为93.09%; 在深度学习算法中, 采用改进的孪生网络结构、发明了一种标签生成法、设置特定的数据增强策略并增加一个特征面分类网络, 从而提高了训练效率和准确率. 最终的测试结果显示, 改进的孪生网络表现最佳, 可以实现98.56%的准确率和27.80次/s的推理速度. 综上所述, 采用改进的孪生网络算法更适用于药品图片的快速比对, 并且有望在未来的医药行业中得到广泛应用.
Abstract:As a research direction of computer vision, image similarity comparison has a wide range of applications, such as face recognition, person re-identification, and target tracking. However, the summary and induction of image similarity algorithms are relatively few, and there are challenges in applying them to actual industrial production. This study summarizes the principle and performance of traditional image processing algorithms and deep learning image processing algorithms in image similarity comparison, aiming to select the best algorithm for the scene of drug image similarity comparison. Among the traditional image processing algorithms, the ORB algorithm performs best on the test set, with an accuracy of 93.09%. In the deep learning algorithm, the study adopts an improved Siamese network structure, invents a label generation method, sets a specific data augmentation strategy, and adds a feature surface classification network to improve the training efficiency and accuracy. The final test results show that the improved Siamese network performs best and can achieve an accuracy of 98.56% and an inference speed of 27.80 times/s. In summary, the improved Siamese network algorithm is more suitable for the fast comparison of drug images and is expected to be widely used in the future pharmaceutical industry.
文章编号:     中图分类号:TP    文献标志码:
基金项目:
引用文本:
王华溢,黄要诚,蔡波.基于传统方法与深度学习方法的图片相似度算法比较.计算机系统应用,2024,33(2):253-264
WANG Hua-Yi,HUANG Yao-Cheng,CAI Bo.Comparison of Image Similarity Algorithms Based on Traditional Methods and Deep Learning Methods.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):253-264