###
计算机系统应用英文版:2024,33(2):72-82
本文二维码信息
码上扫一扫!
结合密集注意力的自适应特征融合图像去雾网络
(兰州理工大学 计算机与通信学院, 兰州 730050)
Adaptive Feature Fusion Image Dehazing Network Combined with Dense Attention
(School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 448次   下载 1628
Received:August 21, 2023    Revised:September 26, 2023
中文摘要: 目前, 大多数图像去雾算法忽视图像的局部细节信息, 无法充分利用不同层次的特征, 导致恢复的无雾图像仍存在颜色失真、对比度下降和雾霾残留现象, 针对这一问题, 提出结合密集注意力的自适应特征融合图像去雾网络. 该网络以编码器-解码器结构为基本框架, 中间嵌入特征增强部分与特征融合部分, 通过在特征增强部分叠加由密集残差网络与CS联合注意模块构成的密集特征注意块, 使网络可以关注图像的局部细节信息, 同时增强特征的重复利用, 有效防止梯度消失; 在特征融合部分构建自适应特征融合模块融合低级与高级特征, 防止因网络加深而造成浅层特征退化. 实验结果表明, 所提算法在合成有雾图像数据集和真实有雾图像数据集上均表现优异, 在SOTS室内合成数据集上的峰值信噪比和结构相似性分别达到了35.81 dB和0.9889, 在真实图像数据集O-HAZE上的峰值信噪比和结构相似性分别达到了22.75 dB和0.7788, 有效解决了颜色失真、对比度下降和雾霾残留等问题.
Abstract:At present, most image dehazing algorithms ignore the local details of the image and fail to make full use of features at different levels, resulting in color distortion, contrast reduction, and haze residual phenomena in the restored image without fog. To solve this problem, this study proposes an adaptive feature fusion image dehazing network combined with dense attention. The network takes the encoder-decoder structure as the basic framework, and the feature enhancement part and the feature fusion part are embedded in the middle. The dense feature attention block composed of the dense residual network and the Channel-Spatial attention combination module is superimposed on the feature enhancement part. In this way, the network can pay attention to the local details of the image, enhance the reuse of features, and effectively prevent the disappearance of gradients. In the feature fusion part, an adaptive feature fusion module is constructed to fuse low-level and high-level features to prevent shallow feature degradation caused by the deepening of the network. The experimental results show that the proposed algorithm performs well on both synthetic and real fog image datasets. The peak signal-to-noise ratio and structural similarity on SOTS indoor synthetic datasets reach 35.81 dB and 0.9889, respectively, and those on the real image datasets O-HAZE reach 22.75 dB and 0.7788 respectively. The proposed algorithm effectively solves the problems of color distortion, contrast reduction, and haze residue.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61863025)
引用文本:
王燕,他雪,卢鹏屹.结合密集注意力的自适应特征融合图像去雾网络.计算机系统应用,2024,33(2):72-82
WANG Yan,TA Xue,LU Peng-Yi.Adaptive Feature Fusion Image Dehazing Network Combined with Dense Attention.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):72-82