###
计算机系统应用英文版:2024,33(2):134-142
本文二维码信息
码上扫一扫!
基于轻量语义分割网络的遥感土地覆盖分类
(西南科技大学 计算机科学与技术学院, 绵阳 621010)
Remote Sensing Land Cover Classification Based on Lightweight Semantic Segmentation Network
(School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 482次   下载 1354
Received:August 12, 2023    Revised:September 28, 2023
中文摘要: 高分辨率遥感图像有丰富的空间特征, 针对遥感土地覆盖方法中模型复杂, 边界模糊和多尺度分割等问题, 提出了一种基于边界与多尺度信息的轻量化语义分割网络. 首先, 使用轻量化的MobileNetV3分类器, 采用深度可分离卷积来减少计算量. 其次, 使用自顶向下和自底向上的特征金字塔结构来进行多尺度分割. 接着, 设计了一个边界增强模块, 为分割任务提供丰富的边界细节信息. 然后, 设计了一个特征融合模块, 融合边界与多尺度语义特征. 最后, 使用交叉熵损失函数和Dice损失函数来处理样本不平衡的问题. 在 WHDLD数据集的平均交并比达到了59.64%, 总体精度达到了87.68%. 在DeepGlobe数据集的平均交并比达到了70.42%, 总体精度达到了88.81%. 实验结果表明, 该模型能快速有效地实现遥感图像土地覆盖分类.
Abstract:High-resolution remote sensing images have rich spatial features. To solve the problems of complex models, blurred boundaries, and multi-scale segmentation in remote sensing land cover methods, this study proposes a lightweight semantic segmentation network based on boundary and multi-scale information. First, the method uses a lightweight MobileNetV3 classifier and depthwise separable convolutions to reduce computation. Second, the method adopts top-down and bottom-up feature pyramid structures for multi-scale segmentation. Next, a boundary enhancement module is designed to provide rich boundary detail information for the segmentation task. Then, the method designs a feature fusion module to fuse boundary and multi-scale semantic features. Finally, the method applies cross-entropy and Dice loss functions to deal with the sample imbalance. The mean intersection over union of the WHDLD dataset reaches 59.64%, and the overall accuracy reaches 87.68%. The mean intersection over union of the DeepGlobe dataset reaches 70.42%, and the overall accuracy reaches 88.81%. The experimental results show that the model can quickly and effectively realize the land cover classification of remote sensing images.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(NSFC62076209)
引用文本:
朱婉玲,贾渊.基于轻量语义分割网络的遥感土地覆盖分类.计算机系统应用,2024,33(2):134-142
ZHU Wan-Ling,JIA Yuan.Remote Sensing Land Cover Classification Based on Lightweight Semantic Segmentation Network.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):134-142