本文已被:浏览 648次 下载 1406次
Received:August 09, 2023 Revised:September 15, 2023
Received:August 09, 2023 Revised:September 15, 2023
中文摘要: 现有的图像去模糊方法通常直接采用图像的空间域或频率域信息恢复清晰图像, 忽略了空间域信息和频率域信息的互补性. 利用图像的空间域信息可以有效地恢复物体结构, 而利用图像的频率域信息可以有效地恢复纹理细节. 本文提出了一种简单、有效的图像去模糊框架, 可以充分利用图像的空间域和频率域信息, 产生高质量的清晰图像. 首先采用两个结构相同但独立的网络分别从图像的空间域和频率域中学习模糊图像到清晰图像的映射关系; 然后使用一个单独的融合网络, 充分融合空间域和频率域的图像信息, 进一步提升清晰图像的质量. 3个网络链接形成一个端到端的、可学习的大网络, 不同网络之间相互影响, 通过联合优化最终得到高质量的清晰图像. 在公共图像去模糊数据集GoPro、Kohler以及RWBI上, 本文方法的峰值信噪比、结构相似度、平均绝对误差3个指标都优于9个先进的图像去模糊方法. 大量的实验结果验证了本文提出的融合空间域和频率域信息的图像去模糊方法的有效性.
Abstract:The existing image deblurring methods typically directly use spatial or frequency domain information to restore clear images, ignoring the complementarity of spatial and frequency domain information. Utilizing the spatial domain information of images can effectively restore object structures while utilizing the frequency domain information of images can effectively restore texture details. This study proposes a simple and effective image deblurring framework that can fully utilize both the spatial and frequency domain information of images to produce high-quality and clear images. Firstly, two independent networks with the same structure are employed to learn the mapping relationship from the blurred images to the clear images in the spatial and frequency domain, respectively. Then a separate fusion network is adopted to further elevate the quality of clear images by fully integrating image information from both spatial and frequency domains. The three networks can be linked to form an end-to-end trainable large network, where they interact with each other to obtain high-quality images by joint optimization. The proposed method surpasses 9 state-of-the-art image deblurring methods in terms of peak signal-to-noise ratio, structural similarity index metric, and mean absolute error on the public image deblurring datasets including GoPro, Kohler, and RWBI. The effectiveness of the proposed image deblurring method which integrates both spatial and frequency domain information is verified by a large number of experiments.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(62172418); 中央高校基本科研业务费项目中国民航大学专项(3122020045); 中国民航大学科研启动项目(2017QD15X, 2017QD17X); 中国民航大学学科经费(2012/230123006002)
引用文本:
邢艳,陈晓璐,徐启奥,黄睿.融合空间域和频率域信息的图像去模糊.计算机系统应用,2024,33(2):1-12
XING Yan,CHEN Xiao-Lu,XU Qi-Ao,HUANG Rui.Image Deblurring by Fusing Information of Spatial and Frequency Domains.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):1-12
邢艳,陈晓璐,徐启奥,黄睿.融合空间域和频率域信息的图像去模糊.计算机系统应用,2024,33(2):1-12
XING Yan,CHEN Xiao-Lu,XU Qi-Ao,HUANG Rui.Image Deblurring by Fusing Information of Spatial and Frequency Domains.COMPUTER SYSTEMS APPLICATIONS,2024,33(2):1-12